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Swimming and steering of artificial microswimmer in viscous fluid

Aine Zhang
Shanghai High School International Division

Nature is alive with all kinds of swimming microorganisms. The research on the locomotion
of these microswimmers helps us not only to understand the micro world but also to engineer a
variety of useful artificial devices. This report investigates swimming behaviors and steering of a
microswimmer in a viscous fluid. We begin with background and then introduce a mathematical
model of the microswimmer under study. The analytic expressions of dynamics are explicitly derived,
which enables us to study basic properties of time evolutions and to examine symmetries in the
dynamics as well as their ramifications on the swimming trajectory. Using Green’s formula, we reveal
the relation between gait symmetry and net rotation. Then we perform comprehensive investigations
on the gaits with symmetric patterns and their resulting swimming trajectories. Finally, we study
the steering of microswimmer by formulating it into an optimization problem and solving it by
gradient algorithm. We apply sophisticated Automatic Differentiation tools to calculate the gradient
efficiently. Various optimization results are discussed, especially those of steering by symmetric gaits.
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I. INTRODUCTION

Nature is alive with all kinds of swimming microorganisms, e.g., protozoa, bacteria, algae, and sperm cells. These
microorganisms move around by continuously changing their body shapes. Locomotion is one of their fundamental
survival skills, as they need to move for nutrition, to evade predators or toxins, and to get fertilized, among others.

The governing physical laws in this micro world are completely different from those at macro scale. This is a world
of low Reynolds number as Nobel laureate E. M. Purcell pointed out in his seminal talk [12]. The locomotion herein
presents a different set of challenges, and these microorganisms have developed effective swimming strategies after
evolving millions of years.

Researchers have strong interests in understanding these strategies [10]. This not only brings in new knowledge to
biology, mechanics, mathematical control, and robotics, but also helps to engineer micro scale devices that can propel
themselves to fulfill biomedical tasks such as medicine delivery and artery unblocking.

In this research we aim to study a prototype artificial microswimmer, i.e., three-link swimmer, proposed by Pur-
cell [12]. With a simple geometric configuration, this device contains all the necessary ingredients to study swimming
and steering in a low Reynolds number world. It has thus attracted increasing research interests in the past few
decades [11].

Based on a mathematical model of the microswimmer from the literature, we first derive the analytic expressions
of complete swimming dynamics. This leads to the study of basic properties of time evolutions, symmetries in the
dynamics, and net rotations. Moreover, we perform comprehensive investigations on the gaits with symmetric patterns.
We then study the steering of the microswimmer to a prescribed location and orientation by formulating it into an
optimization problem. This is subsequently solved by gradient descent algorithm with Automatic Differentiation tools.
Various optimization results are discussed, especially those of steering by symmetric gaits. This project manifests
nicely how mathematics can be utilized to analyze and solve physical problems.

II. BACKGROUND AND MATHEMATICAL MODEL

In this section, we will introduce some background knowledge about the microswimmer in a viscous fluid, and then
present a mathematical model of three-link microswimmer [5, 7, 11].

A. A world with low Reynolds number

To study swimming behaviors, we start from the famous Navier-Stokes equation in fluid mechanics. The flow field
u and pressure p of a fluid satisfy

−∇p + η∇2u = ρ
∂u

∂t
+ ρ(u · ∇)u, (1)

where ρ is the fluid density, η the viscosity, together with some appropriate boundary conditions.
The Navier-Stokes equation is one of the most difficult problems in mathematics, as it was among the seven

Millennium Prize problems raised by the Clay Mathematics Institute in 2000. Fortunately, we do not need to solve
this equation to study the behaviors of microswimmers—the physical nature greatly simplifies the mathematics. Define
the Reynolds (Re) number of a swimming object as the ratio of its inertial force to viscous one, i.e.,

Re =
avρ

η
,

where a represents the object size, and v the surrounding fluid velocity [12].
The Reynolds number is a dimensionless quantity that characterizes different flow regimes. Microswimmers have

very low Reynolds numbers. For example, a swimming E. Coli in water at normal atmospheric pressure and room
temperature has it around 10−4. In comparison, a human swimming in water has Reynolds number around 106, and
a goldfish around 102 [12].

In a low Reynolds number world, viscous force dominates inertial one. The physical consequence is that every action
has only instantaneous effect, and time makes no difference—only shape changes. Therefore, it is safe to discard the
time dependent terms in the right hand side of Eq. (1) (i.e., inertial terms) and obtain the Stokes equation:

−∇p + η∇2u = 0. (2)
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FIG. 1: In macro world, a scallop can propel itself toward right by opening its shell slowly and closing it quickly. However, this
strategy does not work in a low Reynolds number world, since each opening makes a movement that will be canceled by later
closings.
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FIG. 2: Geometric configuration of a three-link microswimmer that can move around by varying its two joint angles φ1 and φ2.

A microswimmer can propel itself by deforming its shape in a certain pattern that is often called a gait (or stroke). A
famous result is the Scallop theorem [12], which asserts that a reciprocal gait generates no net motion. Here reciprocal
gait means a sequence of shape changes followed by the same sequence in reverse. This can be illustrated by Fig. 1.
In macro world, a scallop can propel itself toward right by opening its shell slowly and closing it quickly,. However,
this strategy does not work in a low Reynolds number world. This is because the scallop has only one joint—the
movement gained from the opening will be canceled by later closings and thus prohibits it from moving anywhere.

Naturally, the simplest microswimmer that can move around has at least two joints. This leads to the three-link
microswimmer originally proposed by Purcell [12] and recently realized in the laboratory [9]. In this research, we will
investigate mathematical properties of its swimming and steering.

B. Mathematical model of three-link microswimmer

This subsection introduces a mathematical model of the three-link microswimmer. There exist several different
models, and we mainly follow the one developed in Ref. [11].

Fig. 2 illustrates the geometric configuration of a three-link microswimmer. Label the central link as 0, and two
lateral links as 1 and 2. For computational simplicity, assume the lengths for all three links as 2l0 and their masses
are evenly distributed. Link 0 and link 1 are connected by joint J1, and link 0 and link 2 by J2. The joint angles φ1

and φ2 describe the rotations of link 1 and link 2 with respect to the central link.
Fix a coordinate system ObXbYb to which all the objects can be referenced. This is usually called base or world

frame in mechanics [13]. Denote the middle point of link i as Oi and attach a body frame OiXiYi to it, where i = 1,
2, 3. The coordinate of Oi in the base frame ObXbYb is represented by a position vector pi = [xi, yi]

T , and the
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FIG. 3: (a) A square gait in counterclockwise direction for the three-link microswimmer; (b) joint angles φ1 and φ2 as functions
of time t.

orientations of
−−−→
J1O0,

−−−→
J1O1, and

−−−→
J2O2 are represented by θ0, θ1, and θ2, respectively. Denote the positive x direction

of link i as αi in the base frame. Then, the angles θi can be written as

θ0 = α0, θ1 = π + α1 = π + θ0 − φ1, θ2 = α2 = θ0 + φ2. (3)

Definition 1 (Posture and Gait) Define the posture of link i as a vector xi consisting of the position vector pi of
its center Oi and the link orientation θi in the base frame, i.e.,

xi =

[
pi

θi

]

=





xi

yi

θi



 , i = 0, 1, 2.

A gait (or stroke) is a continuous function φ(t) = [φ1(t), φ2(t)]
T of joint angles on time interval [t0, tf ] with φ(t0) =

φ(tf ).

The posture describes the state of a link in the base frame, and the gait forms a closed path in the φ1φ2 plane. The
three-link microswimmer moves around by applying gaits, that is, varying its two joint angles.

Example 1 (Square gait) Fig. 3 shows a square gait [12]. The initial condition φ1(0) = φ2(0) = π
3 is marked by a

black circle. This gait contains four legs to form a closed path:

1. Leg 1 (black): φ1 decreases from π
3 to −π

3 , and φ2 keeps constant at π
3 ;

2. Leg 2 (red): φ1 keeps constant at −π
3 , and φ2 decreases from π

3 to −π
3 ;

3. Leg 3 (dark green): φ1 increases from −π
3 to π

3 , and φ2 keeps constant at −π
3 ;

4. Leg 4 (orange): φ1 keeps constant at π
3 , and φ2 increases from −π

3 to π
3 .

Fig. 3(b) plots an example of how φ1(t) and φ2(t) evolve as functions of time. The gait can evolve in different time
trajectories; however, this will not affect the resulting swimming trajectory as shown later.

From the geometric configuration in Fig. 2, the postures x1 and x2 can be represented by

x1 =





x1

y1

θ1



 = x0 − l0





cos θ0

sin θ0

0



 − l0





cosα1

sin α1

0



 +





0
0

π − φ1



 , (4)

x2 =





x2

y2

θ2



 = x0 + l0





cos θ0

sin θ0

0



 + l0





cosα2

sin α2

0



 +





0
0
φ2



 . (5)
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Take derivatives of Eqs. (4) and (5):

ẋ1 =





ẋ1

ẏ1

θ̇1



 = ẋ0 − l0θ̇0





− sin θ0

cos θ0

0



 − l0(θ̇0 − φ̇1)





− sinα1

cosα1

0



 −





0
0

φ̇1





=





ẋ0 + l0 sin θ0θ̇0 + l0 sinα1(θ̇0 − φ̇1)

ẏ0 − l0 cos θ0θ̇0 − l0 cosα1(θ̇0 − φ̇1)

θ̇0 − φ̇1





=





1 0 l0 sin θ0 + l0 sin α1

0 1 −l0 cos θ0 − l0 cosα1

0 0 1





︸ ︷︷ ︸

D1





ẋ0

ẏ0

θ̇0



 +





−l0 sin α1 0
l0 cosα1 0

−1 0





︸ ︷︷ ︸

E1

[
φ̇1

φ̇2

]

,

(6)

and

ẋ2 =





ẋ2

ẏ2

θ̇2



 = ẋ0 + l0θ̇0





− sin θ0

cos θ0

0



 + l0(θ̇0 + φ̇2)





− sinα2

cosα2

0



 −





0
0

φ̇2





=





ẋ0 − l0 sin θ0θ̇0 − l0 sinα2(θ̇0 + φ̇2)

ẏ0 + l0 cos θ0θ̇0 + l0 cosα2(θ̇0 + φ̇2)

θ̇0 − φ̇2





=





1 0 −l0 sin θ0 − l0 sin α2

0 1 l0 cos θ0 + l0 cosα2

0 0 1





︸ ︷︷ ︸

D2





ẋ0

ẏ0

θ̇0



 +





0 −l0 sin α2

0 l0 cosα2

0 1





︸ ︷︷ ︸

E2

[
φ̇1

φ̇2

]

.

(7)

Denote the linear velocity of center Oi in the base frame as vi and the angular velocity as ωi, i.e.,

v0 = ṗ0 =

[
ẋ0

ẏ0

]

, v1 = ṗ1 =

[
ẋ1

ẏ1

]

, v2 = ṗ2 =

[
ẋ2

ẏ2

]

,

and

ω0 = θ̇0, ω1 = θ̇1 = θ̇0 − φ̇1, ω2 = θ̇2 = θ̇0 + φ̇2.

Then,

ẋi =

[
ṗi

θ̇i

]

=

[
vi

ωi

]

.

From Resistive Force Theory (RFT) [4], the viscous drag force fi experienced by link i can be decomposed into the
vector sum of a tangential force fx

i and a normal force fy
i , where fx

i is proportional to the tangential velocity vx
i and

fy
i proportional to the normal velocity vy

i :

fx
i = −cxl0v

x
i , fy

i = −cyl0v
y
i , (8)

and cy = 2cx. Notice that the unit tangential vector is [cosαi, sinαi]
T and the unit normal vector is [− sinαi, cosαi]

T .
Thus we can write

vx
i =

[
cosαi

sin αi

]
[
cosαi sin αi

]
vi, vy

i =

[
− sinαi

cosαi

]
[
− sinαi cosαi

]
vi. (9)

Substitute Eq. (9) into (8):

fx
i = −cxl0

[
cosαi

sin αi

]
[
cosαi sin αi

]
vi = −cxl0

[
cos2 αi sin αi cosαi

sin αi cosαi sin2 αi

]

vi,

fy
i = −cyl0

[
− sinαi

cosαi

]
[
− sinαi cosαi

]
vi = −cyl0

[

sin2 αi − sinαi cosαi

− sinαi cosαi cos2 αi

]

vi.
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Hence,

fi = fx
i + fy

i = −cxl0

[

1 + sin2 αi − sin αi cosαi

− sinαi cosαi 1 + cos2 αi

]

vi.

Also from RFT, the torque mi on link i can be written as mi = − 1
6cxl30ωi. Putting together, we have

Fi =

[
fi
mi

]

= −cxl0





1 + sin2 αi − sinαi cosαi 0
− sinαi cosαi 1 + cos2 αi 0

0 0 1
6 l20





︸ ︷︷ ︸

Pi

[
vi

ωi

]

. (10)

Moreover, the net hydrodynamic force and torque in the frame O0X0Y0 is given by

Fnet = F0 + DT
1 F1 + DT

2 F2 = −cxl0(P0ẋ0 + DT
1 P1ẋ1 + DT

2 P2ẋ2).

Plugging in Eqs. (6) and (7):

Fnet/(−cxl0) = P0ẋ0 + DT
1 P1(D1ẋ0 + E1φ̇) + DT

2 P2(D2ẋ0 + E2φ̇)

= (P0 + DT
1 P1D1 + DT

2 P2D2)ẋ0 + (DT
1 P1E1 + DT

2 P2E2)φ̇.
(11)

We know that the microswimmer experiences zero net force and torque, i.e., Fnet = 0. Rearranging Eq. (11), we
obtain

ẋ0 =

[
v0

ω0

]

= −(P0 + DT
1 P1D1 + DT

2 P2D2)
−1(DT

1 P1E1 + DT
2 P2E2)φ̇. (12)

This is the fundamental mathematical model that we will be using to study three-link microswimmer locomotion. It
expresses the linear and angular velocities ẋ0 of the middle point O0 of link 0 in terms of the applied gait φ and its
velocity φ̇. The swimming trajectory x0(t) can then be obtained by solving Eq. (12) with common numerical software
such as Matlab.

III. SWIMMING DYNAMICS AND SYMMETRY

With the mathematical model of the microswimmer (12), we are ready to study its swimming dynamics and
symmetry. We first derive the detailed analytic expressions for swimming dynamics, and then represent it as a
dynamical system on the special Euclidean group SE(2). We investigate basic properties of time evolutions and
analyze the symmetry in dynamics, gait, and swimming trajectory. Using Green’s formula, we reveal how gait
symmetry affects net rotation.

A. Analytic expressions and basic properties of dynamics

We first derive the analytic expressions for Eq. (12), which is the governing equation of three-link microswimmer’s
locomotion.

Let R(θ0) be a rotation matrix, which rotates a vector by an angle of θ0 counterclockwise:

R(θ0) =

[
cos θ0 − sin θ0

sin θ0 cos θ0

]

.

We know that v0 in Eq. (12) is the linear velocity of O0 in the base frame, and R(−θ0)v0 is its velocity in the O0X0Y0

frame. In this frame, the central link will not feel anything about θ0. Therefore, R(−θ0)v0 cannot be a function of
θ0—it has to be a function of φ1 and φ2 only and we write it as

R(−θ0)v0 =
1

d1
Gvφ̇, (13)

where d1 is the determinant of the matrix P0 + DT
1 P1D1 + DT

2 P2D2:

d1/l20 = 8(cosφ1 + cosφ2)(cosφ1 cosφ2 − 2 sinφ1 sinφ2 + 8) + 24 cosφ1 cosφ2 − 32 sinφ1 sinφ2

+ 12(cos2 φ1 + cos2 φ2) + 7cos2 φ1cos2 φ2 − 11 cosφ1 cosφ2 sin φ1 sin φ2 + 98.
(14)
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Then Eq. (12) can be rewritten as

ṗ0 = v0 =
1

d1
R(θ0)

[
G11

v G12
v

G21
v G22

v

]

︸ ︷︷ ︸

Gv

φ̇,

θ̇0 = ω0 =
1

d1

[
G11

ω G12
ω

]

︸ ︷︷ ︸

Gω

φ̇,

(15)

Using Matlab Symbolic Toolbox (see Appendix A for codes), we can explicitly calculate the analytic expressions of
the entries in Gv as

G11
v

l30
= −39 sinφ1 −

55

12
sin 2φ1 +

31

2
sin φ2 +

41

12
sin 2φ2 − 4 sin (φ1 − 2φ2) −

1

3
sin (φ1 + 2φ2)

−
11

6
sin (2φ1 + φ2) − 24 sin (φ1 − φ2) −

11

12
sin (2φ1 + 2φ2) − 8 sin (φ1 + φ2) ,

G12
v

l30
= 39 sinφ2 +

55

12
sin 2φ2 −

31

2
sinφ1 −

41

12
sin 2φ1 − 4 sin (2φ1 − φ2) +

1

3
sin (2φ1 + φ2)

+
11

6
sin (φ1 + 2φ2) − 24 sin (φ1 − φ2) +

11

12
sin (2φ1 + 2φ2) + 8 sin (φ1 + φ2) ,

G21
v

l30
= −

80

3
cosφ1 −

28

3
cosφ2 −

22

3
cos2 φ1 −

14

3
cos2 φ2 − 36 cosφ1 cosφ2

+
11

3
cosφ1 sin φ1 sin φ2 −

34

3
cosφ1cos2 φ2 −

11

3
cos2 φ1 cosφ2 −

2

3
cosφ2 sin φ1 sin φ2,

G22
v

l30
= −

80

3
cosφ2 −

28

3
cosφ1 −

22

3
cos2 φ2 −

14

3
cos2 φ1 − 36 cosφ1 cosφ2

+
11

3
cosφ2 sin φ1 sin φ2 −

34

3
cos2 φ1 cosφ2 −

11

3
cosφ1cos2 φ2 −

2

3
cosφ1 sin φ1 sin φ2,

(16)

and the entries in Gω as

G11
ω

l20
= 32 cosφ1 + 12 cosφ1 cosφ2 − 16 sinφ1 sin φ2 − 4cos2 φ2 + 4 cosφ1cos2 φ2

+
11

3
cos2 φ1cos2 φ2 − 8 cosφ2 sin φ1 sin φ2 −

11

3
cosφ1 cosφ2 sin φ1 sin φ2 +

82

3
,

G12
ω

l20
= −32 cosφ2 − 12 cosφ1 cosφ2 + 16 sinφ1 sin φ2 + 4cos2 φ1 − 4cos2 φ1 cosφ2

−
11

3
cos2 φ1cos2 φ2 + 8 cosφ1 sin φ1 sin φ2 +

11

3
cosφ1 cosφ2 sin φ1 sin φ2 −

82

3
.

(17)

We now represent the posture dynamics in Eq. (15) by a dynamical system on the Lie group SE(2). Let us introduce
the following definition [16].

Definition 2 The special Euclidean group SE(n) is defined as

SE(n) =

{

A ∈ R
(n+1)×(n+1)

∣
∣
∣
∣
A =

[
R p
0 1

]

, RRT = I, p ∈ R
n

}

.

The posture of the central link x0(t) = [x0(t), y0(t), θ0(t)]
T can be represented by a matrix in SE(2):

T (x0(t)) =





cos θ0(t) − sin θ0(t) x0(t)
sin θ0(t) cos θ0(t) y0(t)

0 0 1



 . (18)
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Taking derivative of Eq. (18) and plugging in Eq. (15), we obtain

Ṫ =





−θ̇0 sin θ0 −θ̇0 cos θ0 ẋ0

θ̇0 cos θ0 −θ̇0 sin θ0 ẏ0

0 0 0



 =





−θ̇0 sin θ0 −θ̇0 cos θ0 1

d1
R(θ0)Gvφ̇

θ̇0 cos θ0 −θ̇0 sin θ0

0 0 0





=





cos θ0 − sin θ0 x0

sin θ0 cos θ0 y0

0 0 1









0 −θ̇0 1

d1
Gvφ̇

θ̇0 0
0 0 0





=





cos θ0 − sin θ0 x0

sin θ0 cos θ0 y0

0 0 1




1

d1





0 −Gωφ̇
Gvφ̇

Gωφ̇ 0
0 0 0





︸ ︷︷ ︸

A(φ,φ̇)

.

(19)

Hence we can obtain

Ṫ = TA(φ, φ̇), T (t0) = T (x0(t0)), (20)

where x0(t0) is the initial posture.
For the gait φ(t) = [φ1(t), φ2(t)]

T on [t0, t], the state transition matrix Φ(t, t0) can be defined as the swimming
trajectory starting from the initial posture x0(t0) = [0, 0, 0]T . That is, it satisfies

Φ̇(t, t0) = Φ(t, t0)A(φ, φ̇), Φ(t0, t0) = I. (21)

Now the swimming trajectory T (t) can be written as T (t) = T (x0(t0))Φ(t, t0), since

Ṫ = T (x0(t0))Φ̇ = T (x0(t0))Φ(t, t0)A(φ, φ̇) = TA(φ, φ̇), and

T (t0) = T (x0(t0))Φ(t0, t0) = T (x0(t0)).

As its name suggests, the state transition matrix Φ(t, t0) describes the mapping from the initial posture T (t0) to the
final one T (t), and it has these properties [3]:

Φ(t, t0) = Φ(t, t1)Φ(t1, t0), (22)

Φ−1(t, t0) = Φ(t0, t). (23)

From the expression of A in Eq. (19), we can obtain the following propositions on the time evolution of swimming
dynamics.

Proposition 1 (Time invariant) If a gait φ(t) is delayed by τ , the resulting state transition matrix is also delayed
by τ .

Proof: Let Ψ(t, t0 + τ) be the state transition matrix for φ(t − τ) with t ≥ t0 + τ . Then

Ψ̇(t, t0 + τ) = Ψ(t, t0 + τ)A(φ(t − τ), φ̇(t − τ)), Ψ(t0 + τ, t0 + τ) = I.

Let t1 = t − τ , where t1 ≥ t0. We have A(φ(t − τ), φ̇(t − τ)) = A(φ(t1), φ̇(t1)). Hence

Ψ̇(t1 + τ, t0 + τ) = Ψ(t1 + τ, t0 + τ)A(φ(t1), φ̇(t1)), Ψ(t0 + τ, t0 + τ) = I.

Comparing with Eq. (21), we know that Ψ(t + τ, t0 + τ) = Φ(t, t0), i.e., Ψ(t, t0 + τ) = Φ(t − τ, t0).

Hence, the dynamical behavior is time invariant, and it is independent of the initial time t0. We can then assume
t0 = 0 and write the state transition matrix as Φ(t).

Proposition 2 (Time scaling) If the time of a gait φ(t) is scaled by a factor k, the time of the resulting state
transition matrix is also scaled by k.
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Proof: Let Ψ(t) be the state transition matrix for φ(kt) with t ≥ 0. Then

Ψ̇(t) = Ψ(t)A(φ(kt), φ̇(kt)), Ψ(0) = I.

Let t1 = kt, where t1 ≥ 0. We have A(φ(kt), φ̇(kt)) = kA(φ(t1), φ̇(t1)). Hence

d

dt1
Ψ(t1/k) = Ψ(t1/k)A(φ(t1), φ̇(t1)), Ψ(0) = I.

Comparing with Eq. (21), we know that Ψ(t/k) = Φ(t), i.e., Ψ(t) = Φ(kt).

This tells us that the swimming trajectory depends only on the gait shape of joint angles but not on how fast it
traverses the gait, which was also previously revealed in [12]. Without loss of generality, we can fix a final time, say,
tf = 1, in our numerical simulations.

With these two properties, Eqs. (22) and (23) can be rewritten as

Φ(t1 + t2) = Φ(t1)Φ(t2), (24)

Φ−1(t) = Φ(−t). (25)

Furthermore, we have the following proposition if reversing the time evolution of φ(t).

Proposition 3 (Time reversal) For the gait φ(−t), the resulting state transition matrix is

Φ(−t) = Φ−1(t) =

[
R(−θ0(t)) −R(−θ0(t))p0(t)

0 1

]

. (26)

Proof: Let Ψ(t) be the state transition matrix for φ(−t) with t ≥ 0. In Proposition 2, let k = −1. We obtain that
Ψ(t) = Φ(−t) = Φ−1(t). Explicit calculation of Φ−1(t) leads to the second equality in Eq. (26).

Remark 1 This proposition can be used to interpret Purcell’s scallop theorem. If a microswimmer first applies a
gait φ(t) and then its time reverse φ(−t), the complete state transition matrix is

Φ(t)Φ(−t) = I,

which indicates that it does not have any net motion.

B. Symmetry in dynamics

We now study the symmetry in the swimming dynamics (21). In particular, we are interested in finding out what
if we flip the sign of φ, i.e., φ becomes −φ; or interchange the order of φ1 and φ2, i.e., φ becomes Jφ, where

J =

[
0 1
1 0

]

.

The sign flip corresponds to the symmetry with respect to the origin, whereas order interchange the symmetry to the
line φ2 = φ1.

Some of these properties were previously examined by applying advanced mathematical techniques [1, 7]. Observing
that the analytic expressions of d1, Gv, and Gω in Eqs. (14), (16), and (17) are all composed of sinusoidal functions
of φ1 and φ2, we will directly make use of odd and even symmetries in sine and cosine functions.

From the expression of d1 in Eq. (14), we know that d1 remains the same under sign flip and order interchange,
i.e.,

d1(φ) = d1(−φ) = d1(Jφ). (27)

Next check Gv and Gω in Eq. (15). For sign flip, the first row of Gv is odd symmetric:

G1
v(−φ) = −G1

v(φ), (28)

and the second row of Gv and Gω are even symmetric:

G2
v(−φ) = G2

v(φ), Gω(−φ) = Gω(φ). (29)
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For order interchange, we have that

G11
v (φ2, φ1) = −G12

v (φ1, φ2), G21
v (φ2, φ1) = G22

v (φ1, φ2), G11
ω (φ2, φ1) = −G12

ω (φ1, φ2),

which can be written compactly as

G1
v(Jφ) = −G1

v(φ)J, G2
v(Jφ) = G2

v(φ)J, Gω(Jφ) = −Gω(φ)J. (30)

We have the following results on the relationship between gait symmetry and swimming trajectories.

Proposition 4 (Sign flip) Suppose that a three-link microswimmer applies a gait φ(t) and obtains the state tran-
sition matrix Φ(t). If the microswimmer applies −φ(t), the resulting state transition matrix is

Φ1(t) = Λ1Φ(t)Λ1 =





cos θ0(t) sin θ0(t) x0(t)
− sin θ0(t) cos θ0(t) −y0(t)

0 0 1



 , (31)

where Λ1 = diag{1,−1, 1}.
Proof: Taking derivative of Φ1(t):

Φ̇1 = Λ1Φ̇Λ1 = Λ1ΦA(φ, φ̇)Λ1 = Λ1ΦΛ1Λ1A(φ, φ̇)Λ1 = Φ1Λ1A(φ, φ̇)Λ1. (32)

From Eq. (19), we get

A(−φ,−φ̇) =
1

d1(−φ)





0 −Gω(−φ)(−φ̇) G1
v(−φ)(−φ̇)

Gω(−φ)(−φ̇) 0 G2
v(−φ)(−φ̇)

0 0 1



 =
1

d1(φ)





0 Gω(φ)φ̇ G1
v(φ)φ̇

−Gω(φ)φ̇ 0 −G2
v(φ)φ̇

0 0 1





= Λ1A(φ, φ̇)Λ1,

(33)

where the second equality is obtained from Eqs. (27), (28), and (29). Substituting Eq. (33) into (32), we have

Φ̇1 = Φ1A(−φ,−φ̇), Φ1(0) = Λ1Φ(0)Λ1 = I.

Therefore Φ1(t) is the state transition matrix for −φ(t).

The sign flip maps a gait φ(t) to −φ(t). From Eq. (31), this transforms the original swimming trajectory from
[x0(t), y0(t), θ0(t)]

T to [x0(t),−y0(t),−θ0(t)]
T .

Proposition 5 (Order interchange) Suppose that a three-link microswimmer applies a gait φ(t) and obtains the
state transition matrix Φ(t). If the microswimmer applies Jφ(t), the resulting state transition matrix is

Φ2(t) = Λ2Φ(t)Λ2 =





cos θ0(t) sin θ0(t) −x0(t)
− sin θ0(t) cos θ0(t) y0(t)

0 0 1



 . (34)

where Λ2 = diag{−1, 1, 1}.
Proof: Taking derivative of Φ2(t):

Φ̇2 = Λ2Φ̇Λ2 = Λ2ΦA(φ, φ̇)Λ2 = Λ2ΦΛ2Λ2A(φ, φ̇)Λ2 = Φ2Λ2A(φ, φ̇)Λ2. (35)

From Eq. (19), we get

A(Jφ, Jφ̇) =
1

d1(Jφ)





0 −Gω(Jφ)(Jφ̇) G1
v(Jφ)(Jφ̇)

Gω(Jφ)(Jφ̇) 0 G2
v(Jφ)(Jφ̇)

0 0 1





=
1

d1(φ)





0 Gω(φ)J(Jφ̇) −G1
v(φ)J(Jφ̇)

−Gω(φ)J(Jφ̇) 0 G2
v(φ)J(Jφ̇)

0 0 1





= Λ2A(φ, φ̇)Λ2,

(36)
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where the second equality is from Eqs. (27) and (30). Substituting Eq. (36) into (35), we have

Φ̇2 = Φ2A(Jφ, Jφ̇), Φ2(0) = Λ2Φ(0)Λ2 = I.

Therefore Φ2 is the state transition matrix for Jφ(t).

The order interchange maps a gait [φ1(t), φ2(t)] to [φ2(t), φ1(t)]. From Eq. (34), this transforms the original
swimming trajectory from [x0(t), y0(t), θ0(t)]

T to [−x0(t), y0(t),−θ0(t)]
T .

Remark 2 Combining these two leads to a new symmetry with respect to the line φ2 = −φ1, which maps [φ1(t), φ2(t)]
to [−φ2(t),−φ1(t)] and transforms the swimming trajectory from [x0(t), y0(t), θ0(t)]

T to [−x0(t),−y0(t), θ0(t)]
T .

C. Green’s formula and net rotation

We observe that the dynamics of orientation θ0 in Eq. (15) depends on only the applied gait φ and its velocity φ̇.
From Green’s formula

∮

Pdx + Qdy =

∫∫

D

(
∂Q

∂x
−

∂P

∂y

)

dxdy,

we can obtain

θ0(tf ) − θ0(0) =

∮
G11

ω (φ)

d1(φ)
dφ1 +

G12
ω (φ)

d1(φ)
dφ2 =

∫∫

D

(
∂

∂φ1

G12
ω (φ)

d1(φ)
−

∂

∂φ2

G11
ω (φ)

d1(φ)

)

dφ1dφ2

=

∫∫

D

W (φ)

24d2
1(φ)

dφ1dφ2.

(37)

Using Matlab Symbolic Toolbox, we can get the analytic expression of W (φ) as

W (φ1, φ2) = −19278(sinφ1 + sin φ2) − 14960(sin2φ1 + sin 2φ2) − 1342(sin 3φ1 + sin 3φ2) − 22(sin 4φ1 + sin 4φ2)

− 5012 sin(φ1 + φ2) + 3420 sin(2φ1 + 2φ2) + 292 sin(3φ1 + 3φ2) + 66(sin(3φ1 + 4φ2) + sin(4φ1 + 3φ2))

+ 10380(sin(φ1 − 2φ2) + sin(φ2 − 2φ1)) − 2248(sin(φ1 + 2φ2) + sin(2φ1 + φ2))

+ 1276(sin(φ1 − 3φ2) + sin(φ2 − 3φ1)) − 920(sin(φ1 + 3φ2) + sin(3φ1 + φ2))

+ 22(sin(φ1 − 4φ2) + sin(φ2 − 4φ1)) − 132(sin(φ1 + 4φ2) + sin(4φ1 + φ2))

+ 240(sin(2φ1 − 3φ2) + sin(2φ2 − 3φ1)) + 756(sin(2φ1 + 3φ2) + sin(3φ1 + 2φ2))

+ 11(sin(2φ1 − 4φ2) + sin(2φ2 − 4φ1)) + 121(sin(2φ1 + 4φ2) + sin(4φ1 + 2φ2)).
(38)

From Eq. (37), we know that the net rotation generated by a gait φ(t) at the final time tf is equal to the double
integral of W/24d2

1 over the interior area encircled by φ(t). If φ(t) moves counterclockwise and gains more positive
double integral than negative one, the microswimmer gets a positive net rotation. It is easy to see that W has the
following symmetry:

W (−φ1,−φ2) = −W (φ1, φ2), W (φ2, φ1) = W (φ1, φ2), W (−φ2,−φ1) = −W (φ1, φ2). (39)

We plot the surface and contour of W/24d2
1 vs φ1 and φ2 in Fig. 4.

Example 2 Consider the net rotations generated by the three gaits in Fig. 5. These gaits do not intersect themselves
and keep the same orientation. Define a positive orientation as when one moves along a gait, the encircled region is
always on the left. The starting point is marked by a black circle.� Fig. 5(a): The gait is odd symmetric with respect to the origin. From Eq. (39), it encircles positive integral

exactly canceled by negative one, and thus the microswimmer gets no net rotation from this gait.� Fig. 5(b): The gait is symmetric with respect to the line φ2 = φ1. In general positive integral cannot be canceled
by negative one, and thus the microswimmer gains a net rotation.� Fig. 5(c): The gait is symmetric with respect to the line φ2 = −φ1. It encircles positive integral exactly canceled
by negative one, and thus the microswimmer receives no net rotation.
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FIG. 4: The function W/24d2

1 vs φ1 and φ2.
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(a) Gait 1.
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(b) Gait 2.
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(c) Gait 3.

FIG. 5: (Color online) Top: three symmetric gaits plotted in colored closed paths. Each gait has two legs: the first in black
and the second in red. The background is the contour of W/24d2

1 as in Fig. 4(b), and the starting point is marked by a black
circle. Gait 1 is symmetric with respect to the origin, Gait 2 to φ2 = φ1, and Gait 3 to φ2 = −φ1. Bottom: the resulting
swimming trajectories.
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IV. SYMMETRIC GAITS AND TRAJECTORIES

In this section, we investigate a variety of symmetric gaits. We calculate the state transition matrix for each
symmetric segment of a gait and then piece them together to obtain the final posture. Some of these gaits yield
particularly preferable locomotions such as pure movements along x0 or y0 axis. These gaits can be used to form a
repertoire to accomplish certain maneuvering tasks.

A. Single symmetric gaits

We first study the gait that is symmetric with respect to a single point or axis, namely, the origin, the line φ2 = φ1,
or the line φ2 = −φ1. Such a gait consists of two symmetric legs. Because of the time evolution properties of swimming
dynamics discussed in Propositions 1 and 2, we can consider each leg evolves on the time interval [0, T

2 ] at the same

speed. Further, denote the first leg of the gait as φ(t) = [φ1(t), φ2(t)]
T and the state transition matrix at the end of

the first leg (i.e., t = T
2 ) as

Φ1 =





cos θ0(
T
2 ) − sin θ0(

T
2 ) x0(

T
2 )

sin θ0(
T
2 ) cos θ0(

T
2 ) y0(

T
2 )

0 0 1



 . (40)

We start from Gaits 1, 2, and 3 shown in Fig. 5. These are all simple curves, i.e., not crossing themselves.

Gait 1 (Origin). Consider Gait 1 as shown in Fig. 5(a), whose two legs are symmetric with respect to the origin.
Each leg is obtained by rotating and translating a lemniscate curve in the first quadrant1

ρ2 = 2γ2 cos 2β, β ∈
[

0,
π

4

]

. (41)

It starts from a point on the line φ2 = −φ1, which is marked by a black circle.
The second leg of the gait is then −φ(t). From Proposition 4, we know that it generates the following state transition

matrix

Φ2 = Λ1Φ1Λ1 =





cos θ0(
T
2 ) sin θ0 x0(

T
2 )

− sin θ0(
T
2 ) cos θ0(

T
2 ) −y0(

T
2 )

0 0 1



 . (42)

The total state transition matrix for Gait 1 is then

Φ = Φ1Φ2 =





1 0 x0(
T
2 )(1 + cos θ0(

T
2 )) + y0(

T
2 ) sin θ0(

T
2 )

0 1 x0(
T
2 ) sin θ0(

T
2 ) + y0(

T
2 )(1 − cos θ0(

T
2 ))

0 0 1



 . (43)

It yields no net rotation as discussed earlier.

Gait 2 (φ2 = φ1). Consider Gait 2 as shown in Fig. 5(b), whose two legs are symmetric with respect to the line
φ2 = φ1. It starts from a point on the line φ2 = φ1, which is marked by a black circle.

The second leg is [φ2(
T
2 − t), φ1(

T
2 − t)], which is effectively the same as [φ2(−t), φ1(−t)] from Proposition 1.

Moreover, from Propositions 3 and 5, it yields the following state transition matrix :

Φ2 = Λ2Φ
−1
1 Λ2 =





cos θ0(
T
2 ) − sin θ0(

T
2 ) x0(

T
2 ) cos θ0(

T
2 ) + y0(

T
2 ) sin θ0(

T
2 )

sin θ0(
T
2 ) cos θ0(

T
2 ) x0(

T
2 ) sin θ0(

T
2 ) − y0(

T
2 ) cos θ0(

T
2 )

0 0 1



 . (44)

The total state transition matrix for Gait 2 is

Φ = Φ1Φ2 =





cos 2θ0(
T
2 ) − sin 2θ0(

T
2 ) x0(

T
2 )(1 + cos 2θ0(

T
2 )) + y0(

T
2 ) sin 2θ0(

T
2 )

sin 2θ0(
T
2 ) cos 2θ0(

T
2 ) x0(

T
2 ) sin 2θ0(

T
2 ) + y0(

T
2 )(1 − cos 2θ0(

T
2 ))

0 0 1



 . (45)

1 All the other curved gaits in this section are obtained by rotating and translating lemniscates.
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(b) Gait 5A.
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(c) Gait 6A.

φ1

φ
2 0

0

π

2

π

2

−π

2

−π

2

π

4

π

4

−π

4

−π

4

x0

y
0 0

0

0.5

0.5

−0.5

−0.5

(d) Gait 4B.
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(e) Gait 5B.
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(f) Gait 6B.

FIG. 6: (Color online) Symmetric gaits and their swimming trajectories. The 1st leg is in black and the 2nd in red. Gaits 4A
& 4B are symmetric with respect to the origin, Gaits 5A & 5B to the line φ2 = φ1, and Gaits 6A & 6B to the line φ2 = −φ1.
Gaits 4A, 5A, and 6A keep orientation the same in both legs, whereas Gaits 4B, 5B, and 6B change it in the 2nd leg.
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It receives a net rotation of 2θ0(
T
2 ).

Gait 3 (φ2 = −φ1). Consider Gait 3 as shown in Fig. 5(c), whose two legs are symmetric with respect to the line
φ2 = −φ1. It starts from a point on the line φ2 = −φ1, which is marked by a black circle.

The second segment is [−φ2(
T
2 − t),−φ1(

T
2 − t)]. From Propositions 3, 4, and 5, we know that the second leg

generates the following state transition matrix

Φ2 = Λ2Λ1Φ
−1
1 Λ1Λ2 =





cos θ0(
T
2 ) sin θ0(

T
2 ) x0(

T
2 ) cos θ0(

T
2 ) + y0(

T
2 ) sin θ0(

T
2 )

− sin θ0(
T
2 ) cos θ0(

T
2 ) −x0(

T
2 ) sin θ0(

T
2 ) + y0(

T
2 ) cos θ0(

T
2 )

0 0 1



 . (46)

The total state transition matrix for Gait 3 is

Φ = Φ1Φ2 =





1 0 2x0(
T
2 )

0 1 2y0(
T
2 )

0 0 1



 . (47)

It generates no net rotation as discussed earlier.

Next we study some two-segment symmetric gaits that cross themselves once, e.g., in the shape of figure 8. Assume
that they start from the intersection point.

Gaits 4A & 4B (Origin). Consider Gaits 4A and 4B whose two legs are symmetric with respect to the origin as
illustrated in Figs. 6(a) and 6(d), where 4A keeps and 4B changes the orientation in the second leg. Both gaits start
from the origin.

For Gait 4A, the second leg is −φ(t). Therefore it is the same case as Gait 1, and gains no net rotation at the final
time. Gait 4B changes the orientation in the second leg and it is then given by −φ(T

2 − t). From Propositions 3 and
4, we know that the second leg generates the following state transition matrix

Φ2 = Λ1Φ
−1
1 Λ1 =





cos θ0(
T
2 ) − sin θ0(

T
2 ) −x0(

T
2 ) cos θ0(

T
2 ) − y0(

T
2 ) sin θ0(

T
2 )

sin θ0(
T
2 ) cos θ0(

T
2 ) −x0(

T
2 ) sin θ0(

T
2 ) + y0(

T
2 ) cos θ0(

T
2 )

0 0 1



 . (48)

The total state transition matrix for Gait 4B is

Φ = Φ1Φ2 =





cos 2θ0(
T
2 ) − sin 2θ0(

T
2 ) x0(

T
2 )(1 − cos 2θ0(

T
2 )) − y0(

T
2 ) sin 2θ0(

T
2 )

sin 2θ0(
T
2 ) cos 2θ0(

T
2 ) −x0(

T
2 ) sin 2θ0(

T
2 ) + y0(

T
2 )(1 + cos 2θ0(

T
2 ))

0 0 1



 . (49)

Thus it gets a net rotation of 2θ0(
T
2 ).

Gaits 5A & 5B (φ2 = φ1). Consider Gaits 5A and 5B whose two legs are symmetric with respect to the line
φ2 = φ1 as illustrated in Figs. 6(b) and 6(e), where 5A keeps and 5B changes the orientation. Both gaits start from
a point on the line φ2 = φ1.

For Gait 5A, the second leg is [φ2(
T
2 − t), φ1(

T
2 − t)]. Therefore it is the same case as Gait 2, and it gets a net

rotation of 2θ0(
T
2 ). Gait 5B changes the orientation in the second leg and thus it is [φ2(t), φ1(t)]. From Proposition 5,

we know that the second leg generates the following state transition matrix

Φ2 = Λ2Φ1Λ2 =





cos θ0(
T
2 ) sin θ0(

T
2 ) −x0(

T
2 )

− sin θ0(
T
2 ) cos θ0(

T
2 ) y0(

T
2 )

0 0 1



 . (50)

The total state transition matrix for Gait 5B is

Φ = Φ1Φ2 =





1 0 x0(
T
2 )(1 − cos θ0(

T
2 )) − y0(

T
2 ) sin θ0(

T
2 )

0 1 −x0(
T
2 ) sin θ0(

T
2 ) + y0(

T
2 )(1 + cos θ0(

T
2 ))

0 0 1



 . (51)

Then it gets no net rotation.
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Gait
Symmetry

wrt

Orient.

change
second leg Φ2 θ0(T ) Final position [x0(T ), y0(T )]

1, 4A origin No [−φ1(t),−φ2(t)] Λ1Φ1Λ1 0

�
x0(

T

2
)(1 + cos θ0(

T

2
)) + y0(

T

2
) sin θ0(

T

2
) ,

x0(
T

2
) sin θ0(

T

2
) + y0(

T

2
)(1 − cos θ0(

T

2
))
�

4B origin Yes [−φ1(−t),−φ2(−t)] Λ1Φ
−1

1
Λ1 2θ0(

T

2
)

�
x0(

T

2
)(1 − cos 2θ0(

T

2
)) − y0(

T

2
) sin 2θ0(

T

2
) ,

−x0(
T

2
) sin 2θ0(

T

2
) + y0(

T

2
)(1 + cos 2θ0(

T

2
))
�

2, 5A φ2 = φ1 No [φ2(−t), φ1(−t)] Λ2Φ
−1

1
Λ2 2θ0(

T

2
)

�
x0(

T

2
)(1 + cos 2θ0(

T

2
)) + y0(

T

2
) sin 2θ0(

T

2
) ,

x0(
T

2
) sin 2θ0(

T

2
) + y0(

T

2
)(1 − cos 2θ0(

T

2
))
�

5B φ2 = φ1 Yes [φ2(t), φ1(t)] Λ2Φ1Λ2 0

�
x0(

T

2
)(1 − cos θ0(

T

2
)) − y0(

T

2
) sin θ0(

T

2
) ,

−x0(
T

2
) sin θ0(

T

2
) + y0(

T

2
)(1 + cos θ0(

T

2
))
�

3, 6A φ2 = −φ1 No [−φ2(−t),−φ1(−t)] Λ2Λ1Φ
−1

1
Λ1Λ2 0

�
2x0(

T

2
), 2y0(

T

2
)
�

6B φ2 = −φ1 Yes [−φ2(t),−φ1(t)] Λ2Λ1Φ1Λ1Λ2 2θ0(
T

2
)

�
x0(

T

2
)(1 − cos θ0(

T

2
)) + y0(

T

2
) sin θ0(

T

2
) ,

−x0(
T

2
) sin θ0(

T

2
) + y0(

T

2
)(1 − cos θ0(

T

2
))
�

TABLE I: Symmetry gaits 1–6B and their properties.

Gaits 6A & 6B (φ2 = −φ1). Consider Gaits 6A and 6B whose two legs are symmetric with respect to the line
φ2 = −φ1 as illustrated in Figs. 6(c) and 6(f), where 6A keeps and 6B changes the orientation. Both gaits start from
a point on the line φ2 = −φ1.

For Gait 6A, the second leg is [−φ2(
T
2 − t),−φ1(

T
2 − t)]. Therefore it is the same case as Gait 3, and gets no net

rotation. Gait 6B changes the orientation in the second leg and then it is [−φ2(t),−φ1(t)]. From Proposition 5, we
know that the second leg generates the following state transition matrix

Φ2 = Λ2Λ1Φ1Λ1Λ2 =





cos θ0(
T
2 ) − sin θ0(

T
2 ) −x0(

T
2 )

sin θ0(
T
2 ) cos θ0(

T
2 ) −y0(

T
2 )

0 0 1



 . (52)

The total state transition matrix for Gait 6B is

Φ = Φ1Φ2 =





cos 2θ0(
T
2 ) − sin 2θ0(

T
2 ) x0(

T
2 )(1 − cos θ0(

T
2 )) + y0(

T
2 ) sin θ0(

T
2 )

sin 2θ0(
T
2 ) cos 2θ0(

T
2 ) −x0(

T
2 ) sin θ0(

T
2 ) + y0(

T
2 )(1 − cos θ0(

T
2 ))

0 0 1



 . (53)

Then it gets a net rotation of 2θ0(
T
2 ).

Compiling all these results together, we obtain Table I. Moreover, we conclude the following proposition.

Proposition 6 A two-leg gait φ(t) yields no net rotation if� its two legs are symmetric with respect to the origin, and the second leg keeps the same orientation as the first
one; or� its two legs are symmetric with respect to the line φ2 = φ1, and the second leg changes the orientation from the
first one; or� its two legs are symmetric with respect to the line φ2 = −φ1, and the second leg keeps the same orientation as
the first one.
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B. Double symmetric gaits

Now we look into the gaits that are symmetric with respect to both the origin and the line φ2 = φ1, which in turn
implies that they are symmetric to φ2 = −φ1 as well. Consider the gaits possessing four segments, and each segment
evolves on the time interval [0, T

4 ] at the same speed. Denote the gait for the first leg as φ(t) = [φ1(t), φ2(t)] and the

state transition matrix at the end of the first leg (i.e., t = T
4 ) as

Φ1 =





cos θ0(
T
4 ) − sin θ0(

T
4 ) x0(

T
4 )

sin θ0(
T
4 ) cos θ0(

T
4 ) y0(

T
4 )

0 0 1



 . (54)

Gait 7. Consider the square Gait 7 as shown in Fig. 7(a), which is also presented in Fig. 3 and originally proposed
by Purcell [12]. The starting point is on the line φ2 = φ1, which is marked by a black circle.

The second leg is [−φ2(
T
4 − t),−φ1(

T
4 − t)], the third [−φ1(t),−φ2(t)], and the fourth [φ2(

T
4 − t), φ1(

T
4 − t)]. From

Propositions 4 and 5, we know these three legs generate the state transition matrices as

Φ2 = Λ1Λ2Φ
−1
1 Λ2Λ1,

Φ3 = Λ1Φ1Λ1,

Φ4 = Λ2Φ
−1
1 Λ2.

(55)

The complete state transition matrix for Gait 7 can be calculated as

Φ = Φ1Φ2Φ3Φ4 =





1 0 4x0(
T
4 )

0 1 0
0 0 1



 . (56)

Therefore, this gait generates a pure x0-axis displacement with no net rotation.

Gaits 8A & 8B. Consider the gaits in Figs. 7(b) and 7(d). Both start from the origin. For Gait 8A, the second
leg is [−φ2(

T
4 − t),−φ1(

T
4 − t)], the third [−φ1(t),−φ2(t)], and the fourth [φ2(

T
4 − t), φ1(

T
4 − t)]. This is indeed the

same as Gait 7, which generates a pure x0 displacement.
For Gait 8B, the second leg is also [−φ2(

T
4 − t),−φ1(

T
4 − t)]. However, it changes orientation in leg 3 and leg 4.

The third leg is then [φ2(t), φ1(t)], and the fourth [−φ1(
T
4 − t),−φ2(

T
4 − t)]. From Propositions 4 and 5, we know

these three legs generate the state transition matrices as

Φ2 = Λ1Λ2Φ
−1
1 Λ2Λ1,

Φ3 = Λ2Φ1Λ2,

Φ4 = Λ1Φ
−1
1 Λ1.

(57)

The complete state transition matrix for Gait 8B is calculated as

Φ = Φ1Φ2Φ3Φ4 =





1 0 0
0 1 4y0(

T
4 )

0 0 1



 . (58)

Therefore, this gait generates a pure y0-axis displacement with no net rotation.

Gaits 9A & 9B. Consider the gaits in Figs. 7(c) and 7(e). Both start from the origin. For Gait 9A, the second
leg is [φ2(

T
4 − t), φ1(

T
4 − t)], the third [−φ1(t),−φ2(t)], and the fourth [−φ2(

T
4 − t),−φ1(

T
4 − t)]. From Propositions 4

and 5, we know these three legs generate the state transition matrices as

Φ2 = Λ2Φ
−1
1 Λ2,

Φ3 = Λ1Φ1Λ1,

Φ4 = Λ1Λ2Φ
−1
1 Λ2Λ1.

(59)
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π
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(a) Gait 7.
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(b) Gait 8A.
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(c) Gait 9A.
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(d) Gait 8B.
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(e) Gait 9B.

FIG. 7: (Color online) These gaits are symmetric with respect to both the origin and φ2 = φ1 and have four legs. The first leg
is in black, the second in red, the third in dark green, and the fourth in orange. The starting point is marked by a black circle.
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Gait
Change

Orient.
Legs 2, 3, and 4 θ0(T ) Final position [x0(T ), y0(T )]

7, 8A No
Φ2 = Λ1Λ2Φ

−1

1
Λ2Λ1,

Φ3 = Λ1Φ1Λ1,
Φ4 = Λ2Φ

−1

1
Λ2

0
�
4x0(

T

4
), 0

�
8B Yes

Φ2 = Λ1Λ2Φ
−1

1
Λ2Λ1,

Φ3 = Λ2Φ1Λ2,
Φ4 = Λ1Φ

−1

1
Λ1

0
�
0, 4y0(

T

4
)
�

9A No
Φ2 = Λ2Φ

−1

1
Λ2,

Φ3 = Λ1Φ1Λ1,
Φ4 = Λ1Λ2Φ

−1

1
Λ2Λ1

0

�
2x0(

T

4
)(1 + cos 2θ0(

T

4
)) + 2y0(

T

4
) sin 2θ0(

T

4
) ,

2y0(
T

4
)(1 − cos 2θ0(

T

4
)) + 2x0(

T

4
) sin 2θ0(

T

4
)
�

9B Yes
Φ2 = Λ2Φ

−1

1
Λ2,

Φ3 = Λ2Λ1Φ1Λ1Λ2,
Φ4 = Λ1Φ

−1

1
Λ1

4θ0(
T

4
)

�
2(1 − cos 2θ0(

T

4
))(x0(

T

4
) + x0(

T

4
) cos 2θ0(

T

4
) + y0(

T

4
) sin 2θ0(

T

4
)) ,

−2 cos 2θ0(
T

4
)(y0(

T

4
) − y0(

T

4
) cos 2θ0(

T

4
) + x0(

T

4
) sin 2θ0(

T

4
))
�

TABLE II: Symmetric gaits 7–9B and their properties.

The complete state transition matrix for Gait 9A is calculated as

Φ = Φ1Φ2Φ3Φ4 =





1 0 2x0(
T
4 )(1 + cos 2θ0(

T
4 )) + 2y0(

T
4 ) sin 2θ0(

T
4 )

0 1 2y0(
T
4 )(1 − cos 2θ0(

T
4 )) + 2x0(

T
4 ) sin 2θ0(

T
4 )

0 0 1



 . (60)

For Gait 9B, the second leg is [φ2(
T
4 −t), φ1(

T
4 −t)], the third [−φ2(t),−φ1(t)], and the fourth [−φ1(

T
4 −t),−φ2(

T
4 −t)].

From Propositions 4 and 5, we know these three legs generate the state transition matrices as

Φ2 = Λ2Φ
−1
1 Λ2,

Φ3 = Λ2Λ1Φ1Λ1Λ2,

Φ4 = Λ1Φ
−1
1 Λ1.

(61)

The complete state transition matrix for four legs is calculated as

Φ = Φ1Φ2Φ3Φ4 =





cos 4θ0(
T
4 ) − sin 4θ0(

T
4 ) 2(1 − cos 2θ0(

T
4 ))(x0(

T
4 ) + x0(

T
4 ) cos 2θ0(

T
4 ) + y0(

T
4 ) sin 2θ0(

T
4 ))

sin 4θ0(
T
4 ) cos 4θ0(

T
4 ) −2 cos 2θ0(

T
4 )(y0(

T
4 ) − y0(

T
4 ) cos 2θ0(

T
4 ) + x0(

T
4 ) sin 2θ0(

T
4 ))

0 0 1



 .

(62)

These properties of Gaits 7-9B and their final orientations and positions are summarized in Table II.

V. STEERING THE MICROSWIMMER

In the previous section, we have looked into a collection of symmetric gaits that can drive the three-link microswim-
mer to certain final posture. In this section, we study the converse problem, that is, finding a gait that steers the
microswimmer to some desired final posture.

A. A constructive approach

We begin with a simple constructive approach to solve this problem. To steer the microswimmer to a desired
location, we can divide the task into a series of movements along x0 or y0 directions. For example, if we want to start
the swimmer from the origin and move it to the target location [xd

0 , y
d
0 ] marked as a red dot in Fig. 8, we can first

move it along x0 direction to [xd
0, 0] and then along y0 direction to [xd

0 , y
d
0 ], or first along y0 direction to [0, yd

0 ] and
then along x0 direction to [xd

0 , y
d
0 ]. Of course, there are infinitely many such paths consisting of a series of pure x0

and y0 movements. It is clear that if we can design gaits to move any arbitrary distance along the x0- and y0-axis,
we can achieve anywhere in the plane.
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x0

y0

[xd
0
, yd

0
]

FIG. 8: Different paths to achieve the target location [xd
0, y

d
0 ].
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(a) Gait 7 with different side lengths.
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(c) Gait 8A with different parameter γ.
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(e) Gait 8B with different parameter γ.
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(f) Final y0 achieved. Min: -0.1702; Max: 0.1969.

FIG. 9: (Color online) The final x0 or y0 location as a function of gait amplitude. The colored dot in the right figure indicates
the final location achieved by the gait in the same color in the left.
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From Table II, we observe that both Gaits 7 and 8A steer the microswimmer to a final location on the x0-axis, and
Gait 8B moves it on the y0-axis. We just need to find appropriate amplitudes for these gaits to achieve a desired x0

or y0 movement.
For Gait 7, we vary the side length of the square to obtain a series of similar gaits as shown in Fig. 9(a). The final

achieved positions on the x0-axis are plotted as a function of the side length in Fig. 9(b), where the black, red, dark
green, and orange dots represent the final x0 position achieved by the gait in the same color in Fig. 9(a). For the side
length in [0, 2π], we get from Fig. 9(b) that the attained range for x0 is [−0.4559, 1.7578]. To steer the microswimmer
to an xd

0 within this range, we can read out a side length corresponding to xd
0 from Fig. 9(b) and then apply Gait 7

with this side length. Note that for negative value of xd
0 , there exist two different feasible side lengths and we can

choose an appropriate one. If the desired xd
0 is outside this range, we can repeatedly apply Gait 7.

Gaits 8A and 8B are pieced together by four branches of lemniscate curves whose analytic expressions are given in
Eq. (41). We can vary the parameter γ therein to obtain a series of similar gaits with different amplitudes as shown in
Figs. 9(c) and 9(e). The final achieved locations on the x0-axis and y0-axis are plotted as functions of γ in Figs. 9(d)
and 9(f), where the colored dots represent the final position achieved by the gait in the same color in the left figures.
The achieved x0 range from Gait 8A is [−0.0800, 1.1026], and y0 range from Gait 8B is [−0.1701, 0.1969]. The same
technique discussed for Gait 7 above can be used for Gait 8A to achieve a desired xd

0 location and for Gait 8B to a
desired yd

0 location. Combining these three gaits, the microswimmer can move to any location in the plane.
Comparing Gaits 7 and 8A, we notice that Gait 7 steers the microswimmer along x0-axis farther than 8A, provided

that they have similar amplitudes. Moreover, Figs. 9(d) and 9(f) show that it is easier for the microswimmer to move
along x0 than y0 direction.

B. Optimization approach and Automatic Differentiation

We consider an optimization approach to solve the steering of microswimmer, that is, formulating it as an opti-
mization problem. Some early results were reported in [8, 11, 14, 17]. In the current work, we will use the gradient
descent algorithm to find steering gaits and apply symmetry properties studied in preceding sections. In particular,
we will utilize the Automatic Differentiation (AutoDiff) technique to compute the gradients efficiently.

Suppose that the desired posture is [xd
0, y

d
0 , θd

0 ]T , and the actual posture achieved by the microswimmer at the final
time is [x0(T ), y0(T ), θ0(T )]T . We can use a quadratic function to quantify the difference between these two postures:

J0(φ(t)) =
1

2

(
x0(T ) − xd

0

)2
+

1

2

(
y0(T ) − yd

0

)2
+

1

2

(
θ0(T ) − θd

0

)2
. (63)

We take J0 as the cost function (also known as penalty function) of an optimization problem, and the gait φ(t) as
the optimization variable. Different gait φ(t) yields different final posture, and thus results in different cost. Our
objective is to find a gait φ(t) that minimizes this cost function. In the ideal case when J0 = 0, we obtain a gait that
can drive the swimmer to the desired posture exactly.

The steering of microswimmer can then be formulated as the following optimization problem:

min
φ(t)

J0(φ(t)),

subject to ṗ0 =
1

d1
R(θ0)Gvφ̇,

θ̇0 =
1

d1
Gωφ̇.

(64)

The optimization variable φ(t) is a continuous function, and in general it is difficult to optimize over functions. Hence
we consider the Fourier expansion of φ(t) on [0, T ]:

φ1(t) = a0 +
∑N

n=1
(an cosnωt + bn sin nωt),

φ2(t) = c0 +
∑N

n=1
(cn cosnωt + dn sin nωt),

(65)

where ω = 2π/T . Note that the expansion is truncated at the order of N , and the conditions φ1(0) = φ1(T ) and
φ2(0) = φ2(T ) are automatically satisfied. The gait functions φ1(t) and φ2(t) are completely characterized by the
expansion coefficients, which can form a vector:

µ = [a0, a1, b1, · · · , aN , bN , c0, c1, d1, · · · , cN , dN ]T . (66)
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The search for a steering gait is converted to find an appropriate coefficient vector µ∗ that minimizes the cost function
J0.

There exist many optimization algorithms to solve this problem. In this work, we adopt gradient descent algorithm,
which is a simple yet widely used optimization algorithm. Gradient algorithm is an iterative procedure. At each step,
we compute the gradient of the cost function with respect to the optimization variables. This gives a direction to
reduce the cost function, which can be used to update the current solution to a better one. The procedure of the
gradient descent algorithm can be listed as follows.

1. Choose an initial guess of the Fourier coefficient vector µ0;

2. At the k-th iteration, compute J0(µ
k) and the gradient ∇T

µkJ0(µ
k);

3. Update the coefficient vector by µk+1 = µk − ǫ∇T
µkJ0(µ

k), where ǫ is a chosen small positive number;

4. Repeat 2-3 until a desired convergence is reached.

The implementation of gradient algorithm is straightforward, and the key step is to compute the gradient ∇T
µkJ0(µ

k).

There exist multiple methods to do this computation. The most common one is finite difference; however, it has
intrinsic approximating errors and may result in numerical instability. Another method is symbolic differentiation,
which can lead to inefficient codes and is usually difficult to deal with computation programs.

Automatic differentiation (AutoDiff) technique overcomes these difficulties and have made significant progresses
in recent years [2]. In general, a function can be calculated by executing a series of basic operations (+, −, ∗, /)
and elementary functions such as exp, log, sin, cos, etc. The basic idea of AutoDiff is to automatically analyze and
track this series of operations and functions, and then to repeatedly apply the chain rule to compute the derivatives.
There are several AutoDiff tools available, including ADOL-C [15], Google TensorFlow [6], and Matlab Deep Learning
Toolbox. In our case, we need to take the derivative of final posture [x0(T ), y0(T ), θ0(T )], which is the solution of
differential equation (64) at the final time. We will use Matlab AutoDiff tools to calculate the gradients because it
requires only minimum programming efforts2. The detailed code is included in Appendix B.

Without imposing any constraints on gait symmetry for the time being, we apply gradient descent algorithm to
investigate the following two steering problems.

Example 3 Consider to steer the microswimmer from an initial position [0, 0] to a final position [−0.5, 0.2]. The
initial orientation θ0(0) is set at 0, and the final orientation θ0(T ) is left free. Set the truncation order N = 5.
The gradient algorithm yields two different results as shown in Fig. 10: (a) plots the two obtained gaits, (b) the
corresponding swimming trajectories, and (c) how the cost functions decrease versus iteration number. The difference
between these two results is that they start from different initial guesses. For the top row, the initial gait is chosen
to be

φ1(t) = 0.5 cosωt, φ2(t) = 0.5 sinωt,

and thus the initial coefficient vector is

µ0 = [0, 0.5, 0, · · · , 0
︸ ︷︷ ︸

2N−1

, 0, 0, 0.5, 0, · · · , 0
︸ ︷︷ ︸

2N−2

]T .

For the bottom row, it is

φ1(t) = 0.1 cosωt, φ2(t) = 0.1 sinωt,

and thus

µ0 = [0, 0.1, 0, · · · , 0
︸ ︷︷ ︸

2N−1

, 0, 0, 0.1, 0, · · · , 0
︸ ︷︷ ︸

2N−2

]T .

It can be seen that both gaits steer the microswimmer to the desired location [−0.5, 0.2] with high accuracy; however,
these two gaits look very different. This is because gradient descent algorithm is a local method, and the optimization
result highly depends on the initial guess.

2 The procedure of solving differentiation equation for AutoDiff can be done by Matlab command dlode45, which is available only in
Matlab version 2021b and later.
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(a) Gaits obtained.
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(b) Swimming trajectories.
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(c) Cost function convergence.

FIG. 10: (Color online) Gaits obtained from gradient descent algorithm that steer the microswimmer from [0, 0] to [−0.5, 0.2].
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(a) Gaits obtained.
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(b) Swimming trajectories.

FIG. 11: (Color online) Gaits to achieve a net rotation of π

4
.

Example 4 Consider to achieve a pure rotation, e.g., starting from an initial posture [0, 0, 0] to a final one [0, 0, π
4 ].

Set the initial gait as

φ1(t) = cosωt, φ2(t) = sin ωt.

Fig. 11(a) shows the obtained gaits when the truncation order N is set to be 1, 2, and 5, and (b) plots the corresponding
swimming trajectories. All of these three gaits generate swimming trajectories that can achieve the desired pure
rotation with high accuracy. However, we observe that larger truncation order N yields more curved gaits with cusps,
because larger N results in more high frequency components in the gait φ(t).
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φ1

φ2

φ
′
1

φ
′
2

(a) Coordinate system φ1φ2 (b) Coordinate system φ′

1
φ′

2

FIG. 12: A new coordinate system φ′

1φ
′

2 obtained by rotating φ1φ2 for π/4 counterclockwise.

C. Simplified Fourier expansions for symmetric gaits

Examples 3 and 4 manifest that there may exist many different gaits that can achieve the same final posture.
We now consider to steer with symmetric gaits. The symmetry in the geometric shape of a gait imposes certain
constraints on its Fourier expansion coefficients and can considerably simplify them. This reduces the dimension of
optimization variables and consequently alleviates the computational load of the optimization procedure. We hereby
derive simplified Fourier expansions for the symmetric gaits investigated in Sec. IV.

Take Gaits 7 and 8A for example. They are symmetric with respect to both the lines φ2 = φ1 and φ2 = −φ1. For
simplicity, we represent the gait in a new coordinate system φ′

1φ
′
2 defined by these two lines, as shown in Fig. 12(b).

This way, the symmetry with respect to the line φ2 = φ1 becomes mirror image to the horizontal φ′
1 axis, and the

symmetry to the line φ2 = −φ1 is mirror image to the vertical φ′
2 axis. The coordinates of the gait in the original

φ1φ2 frame can be obtained by φ(t) = R(π
4 )φ′(t).

Suppose that the Fourier expansions for Gaits 7 and 8A in the φ′
1φ

′
2 frame are given by 3

φ′
1(t) = a0 +

∑N

n=1
(an cosnωt + bn sin nωt),

φ′
2(t) = c0 +

∑N

n=1
(cn cosnωt + dn sin nωt),

(67)

where t ∈ [0, T ]. We then consider leg 2, leg 3, and leg 4.

Leg 2. From Fig. 7(a), for t ∈ [T
4 , T

2 ], we have φ′
1(t) = −φ′

1(
T
2 − t) and φ′

2(t) = φ′
2(

T
2 − t). Because nω

(
T
2 − t

)
=

nπ − nωt, we get

−φ′
1

(
T

2
− t

)

= −a0 −
∑N

n=1
(an cos(nπ − nωt) + bn sin(nπ − nωt))

= −a0 +
∑N

n=1
((−1)n+1an cosnωt + (−1)nbn sin nωt),

φ′
2

(
T

2
− t

)

= c0 +
∑N

n=1
(cn cos(nπ − nωt) + dn sin(nπ − nωt))

= c0 +
∑N

n=1
((−1)ncn cosnωt + (−1)n+1dn sin nωt).

(68)

Equating the corresponding coefficients in Eq. (68) with those in (67), we obtain that

a0 = 0, aeven = 0, bodd = 0, codd = 0, deven = 0. (69)

Leg 3. For t ∈ [T
2 , 3T

4 ], we have φ′
1(t) = −φ′

1(t −
T
2 ) and φ′

2(t) = −φ′
2(t −

T
2 ). Then nω

(
t − T

2

)
= nωt − nπ. We

3 With a slight abuse of notation, we use same symbols for Fourier expansion coefficients as in Eq. (65).
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get

−φ′
1

(

t −
T

2

)

= −a0 −
∑N

n=1
(an cos(nωt − nπ) + bn sin(nωt − nπ))

= −a0 +
∑N

n=1
((−1)n+1an cosnωt + (−1)n+1bn sin nωt),

−φ′
2

(

t −
T

2

)

= −c0 −
∑N

n=1
(cn cos(nωt − nπ) + dn sin(nωt − nπ)

= −c0 +
∑N

n=1
((−1)n+1cn cosnωt + (−1)n+1dn sin nωt.

(70)

Equating the corresponding coefficients in Eq. (70) with those in (67), we get

a0 = 0, aeven = 0, beven = 0, c0 = 0, ceven = 0, deven = 0. (71)

Leg 4. For t ∈ [ 3T
4 , T ], we have φ′

1(t) = φ′
1(T − t) and φ′

2(t) = −φ′
2(T − t). Then nω (T − t) = 2nπ−nωt. We have

φ′
1 (T − t) = a0 +

∑N

n=1
(an cos(2nπ − nωt) + bn sin(2nπ − nωt))

= a0 +
∑N

n=1
(an cosnωt− bn sin nωt),

−φ′
2 (T − t) = −c0 −

∑N

n=1
(cn cos(2nπ − nωt) + dn sin(2nπ − nωt)

= −c0 +
∑N

n=1
(−cn cosnωt + dn sin nωt).

(72)

Equating the corresponding coefficients in Eq. (72) with those in (67), we get

bn = 0, c0 = 0, cn = 0. (73)

Combining Eqs. (69), (71), and (73), we obtain

a0 = 0, aeven = 0, bn = 0, c0 = 0, cn = 0, deven = 0. (74)

Hence the Fourier expansion of Gaits 7 and 8A can be written as

φ′
1(t) =

∑N

n=1,odd
an cosnωt,

φ′
2(t) =

∑N

n=1,odd
dn sin nωt.

(75)

In addition, since Gait 8A starts from the origin, it has to satisfy an extra condition

φ′
1(0) =

∑N

n=1,odd
an = 0.

We perform similar analyses to all the other symmetric gaits, and obtain their corresponding simplified Fourier
expansions as shown in Table III. For single symmetric gaits 1–6B, either the even or odd coefficients are eliminated,
or the entire sine or cosine terms. This effectively cuts the number of Fourier expansion coefficients by half. For
double symmetric gaits 7–9B, the expansion expressions are even more simplified and the coefficient numbers can be
brought down to a quarter. This can greatly alleviate the computational load for the optimization procedure.

D. Steering by symmetric gaits

With the simplified Fourier expansion derived above, we consider to steer the microswimmer by applying symmetric
Gaits 7 and 8B. The comprehensive investigations on other symmetric gaits are left to future work.

From previous studies, we know that Gait 7 moves the microswimmer along x0 direction. We address the question
how far Gait 7 can move the microswimmer toward the negative x0-axis on the time interval [0, T ]. Note that when
we refer to Gait 7 in what follows, it does not have to be in the same square shape as in Fig. 7(a), but rather can
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Gait φ′

1 φ′

2 Additional Conditions

1
PN

n=1,odd
(an cos nωt + bn sin nωt)

PN

n=1,odd
(cn cos nωt + dn sin nωt)

4A ditto ditto

PN

n=1,odd
an = 0PN

n=1,odd
cn = 0

4B
PN

n=1
bn sin nωt

PN

n=1
dn sin nωt

2 a0 +
PN

n=1
an cos nωt

PN

n=1
dn sin nωt

5A ditto ditto a0 +
PN

n=1
an = 0

5B a0 +
PN

n=2,even
(an cos nωt + bn sin nωt)

PN

n=1,odd
(cn cos nωt + dn sin nωt)

a0 +
PN

n=2,even
an = 0PN

n=1,odd
cn = 0

3
PN

n=1
bn sin nωt c0 +

PN

n=1
cn cos nωt

6A ditto ditto c0 +
PN

n=1
cn = 0

6B
PN

n=1,odd
(an cos nωt + bn sin nωt) c0 +

PN

n=2,even
(cn cos nωt + dn sin nωt)

PN

n=1,odd
an = 0

c0 +
PN

n=2,even cn = 0

7
PN

n=1,odd
an cos nωt

PN

n=1,odd
dn sin nωt

8A ditto ditto
PN

n=1,odd
an = 0

8B
PN

n=2,even
bn sin nωt

PN

n=1,odd
dn sin nωt

9A
PN

n=1,odd
bn sin nωt

PN

n=1,odd
cn cos nωt

PN

n=1,odd
an = 0

9B
PN

n=1,odd
bn sin nωt

PN

n=2,even
dn sin nωt

TABLE III: Fourier Expansions of φ′

1 and φ′

2 for Gaits 1-9B.

be any gait that is symmetric with respect to both φ′
1 and φ′

2 axes, starts from φ′
2 axis, and does not cross itself.

Moreover, from the Fourier expansion listed in Table III, φ′
1 of such a gait contains only the odd cosine terms and φ′

2

only the odd sine terms.
This can be formulated as the following optimization problem

min
µ

x0(T ),

subject to ṗ0 =
1

d1
R(θ0)Gvφ̇,

θ̇0 =
1

d1
Gωφ̇,

(76)
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(a) The gait looping around the ellipsoidal
path for five times.
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(b) Swimming trajectory moving towards negative x0 direction.

FIG. 13: Gait to achieve a smallest possible x0(T ) when N = 5.

where µ is the Fourier coefficient vector defined in Eq. (66). Set N = 5 and the initial guess as the unit circle:

φ′
1(t) = cosωt, φ′

2(t) = sin ωt.

The gradient descent algorithm generates the following result:

φ′
1(t) = −0.0003 cosωt + 0.0010 cos3ωt + 2.1765 cos5ωt,

φ′
2(t) = 0.0006 sinωt − 0.0008 sin3ωt + 1.2124 sin5ωt.

(77)

Fig. 13(a) plots this gait, and (b) the corresponding swimming trajectory. It can be seen from Eq. (77) that the
coefficients of the 1st and 3rd harmonics are much smaller than those of the 5th and can be effectively neglected. The
optimal gait indeed travels along an ellipsoidal path for five times. This is because we have specified only the terminal
time T and truncation order N in the formulation, and the swimming trajectory depends only on the geometric shape
of the gait. Then within a given time interval, the optimal gait will be repeating a closed path for N times so as to
move farther left.

To find a steering gait in one cycle, we add some additional penalty function, e.g., the path length traversed by the
center link:

JL =

∫ T

0

√

ẋ2
0 + ẏ2

0 dt. (78)

This is to say, among all the gaits that steer the microswimmer toward farther left, we want to find the one with
short path length. This way the optimization algorithm will stay away from the gait that loops around a closed path
for multiple times. Note that JL is also independent of the time parameterization. To minimize x0(T ) and JL at the
same time, one simple method is to combine them into a weighted sum:

J = x0(T ) + λJL. (79)

Here λ is a weighting factor that is chosen as, say, 0.01, to compromise between two penalty functions. The optimiza-
tion problem can be written as

min
µ

x0(T ) + λJL,

subject to ṗ0 =
1

d1
R(θ0)Gvφ̇,

θ̇0 =
1

d1
Gωφ̇.

(80)

Set N = 5 and initial guess as the unit circle. The gradient algorithm generates the following gait:

φ′
1(t) = 1.3883 cosωt + 0.4562 cos3ωt + 0.2789 cos5ωt,

φ′
2(t) = 1.3108 sinωt + 0.4110 sin3ωt + 0.2108 sin5ωt.
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(a) Gait with path length 3.9944.
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(b) Swimming trajectory.

FIG. 14: (Color online) Optimized Gait 7 to achieve a small x0(T ) with short path length.
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(a) Gait when N = 4.
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(b) Swimming trajectory.

FIG. 15: (Color online) Optimized Gait 8B to achieve a small y0(T ) with short path length.

Fig. 14(a) plots the obtained gait, and (b) the corresponding swimming trajectory. The minimized value of x0(T ) is
−0.6245, which is smaller than the lower bound of the range attained by the original Gait 7 in Fig. 9(b).

Next we study how far Gait 8B can steer the microswimmer toward the negative y0-axis in one cycle. This can be
formulated into the following optimization problem

min
µ

y0(T ) + λJL,

subject to ṗ0 =
1

d1
R(θ0)Gvφ̇,

θ̇0 =
1

d1
Gωφ̇.

(81)

From Table III, we know that φ′
1 for Gait 8B contains only the even sine terms, and φ′

2 only the odd sine terms.
Set the initial guess as

φ′
1(t) = sin 2ωt, φ′

2(t) = sin ωt.

Different truncation order N generates the optimization results as follows.� N = 4:

φ′
1(t) = 1.6055 sin2ωt + 0.1546 sin4ωt,

φ′
2(t) = 1.9037 sinωt − 0.8099 sin3ωt,

y0(T ) = −0.2710,

JL = 6.3072;
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30� N = 6:

φ′
1(t) = 1.3714 sin2ωt − 0.4564 sin4ωt − 0.1537 sin6ωt

φ′
2(t) = 1.3996 sinωt − 0.9472 sin3ωt + 0.3811 sin5ωt

y0(T ) = −0.2712,

JL = 6.3420;� N = 8:

φ′
1(t) = 1.0600 sin2ωt − 0.6726 sin4ωt + 0.0978 sin6ωt + 0.1025 sin8ωt

φ′
2(t) = 1.1243 sinωt − 0.8930 sin3ωt + 0.4860 sin5ωt− 0.2108 sin7ωt

y0(T ) = −0.2703,

JL = 6.1425.

These results show that different N generates similar values of y0(T ), which are all considerably smaller than the lower
bound of the range achieved by the original Gait 8B in Fig. 9(f). Fig. 15 shows the optimal gait and the corresponding
swimming trajectory when N = 4. The gaits from N = 6 and N = 8 are also in similar shapes to Fig. 15(a), except
that they are more curved because of the presence of high frequency components.

VI. CONCLUSION AND FUTURE WORK

In this work we studied dynamical behaviors and steering of a three-link microswimmer in a viscous fluid by
analyzing its dynamics and symmetries and by applying optimization techniques.

We derived the analytic expressions of dynamics and discussed basic properties of its time evolutions. We carefully
examined the symmetries in dynamics as well as their ramifications on the swimming trajectory and net rotation.
Moreover, comprehensive investigations on general symmetric gaits were conducted. Based on these results, we
studied the steering problem of microswimmer, which was formulated as an optimization problem and solved by
gradient descent algorithm. Various steering results from different symmetries, initial conditions, truncation orders,
and two-fold objectives were discussed.

In the future, we plan to explore many further interesting problems. One is to study the steering features of
symmetric gaits other than 7 and 8B. Another is to combine other optimal functions such as power, energy, and
efficiency. The ideal goal, of course, will be to build real multi-link microswimmers that realize the various engineering
applications.

APPENDIX A: MATLAB CODE TO COMPUTE Gv AND Gω

clear all;

syms l0 theta0 phi1 phi2 real;

a0=theta0; a1=theta0-phi1; a2=theta0+phi2;

D1=[1 0 l0*(sin(a0)+sin(a1));

0 1 -l0*(cos(a0)+cos(a1));

0 0 1];

D2=[1 0 -l0*(sin(a0)+sin(a2));

0 1 l0*(cos(a0)+cos(a2));

0 0 1];

E1=[-l0*sin(a1) 0;

l0*cos(a1) 0;

-1 0];

E2=[0 -l0*sin(a2);

0 l0*cos(a2);

0 1];

P0=[1+(sin(a0))^2 -sin(a0)*cos(a0) 0;

-sin(a0)*cos(a0) 1+(cos(a0))^2 0;

0 0 l0^2/6];

P1=[1+(sin(a1))^2 -sin(a1)*cos(a1) 0;

-sin(a1)*cos(a1) 1+(cos(a1))^2 0;
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0 0 l0^2/6];

P2=[1+(sin(a2))^2 -sin(a2)*cos(a2) 0;

-sin(a2)*cos(a2) 1+(cos(a2))^2 0;

0 0 l0^2/6];

Z1=simplify( P0+ D1’*P1*D1 + D2’*P2*D2);

S2=simplify( D1’*P1*E1+D2’*P2*E2 );

R=[cos(theta0) -sin(theta0);

sin(theta0) cos(theta0)];

d1=det(Z1);

S1=simplify( -inv(Z1)*d1 );

g0=S1*S2;

G1=simplify([R’*g0(1:2,:); g0(3,:)]);

APPENDIX B: MATLAB CODE TO COMPUTE THE GRADIENT

function [xT, dxTda] = x0T_grad(a)

x3=dlode45(@dx0dt_dlarray, [0 1], dlarray([0;0;0;0], ’SS’), a);

xT=x3(1,1,end);

dxTda = dlgradient(xT,a);

end

function dx0dt = dx0dt_dlarray(t, x, a)

l0=1; w=2*pi; a0=a; rotangle=0; theta0=x(3);

M=length(a0)/2; phi1=a0(1); phi2=a0(M+1); phi1dot=0; phi2dot=0;

for k=1:(M-1)/2

phi1=phi1+a0(2*k)*cos(k*w*t)+a0(2*k+1)*sin(k*w*t);

phi2=phi2+a0(2*k+M)*cos(k*w*t) +a0(2*k+1+M)*sin(k*w*t);

phi1dot=phi1dot-a0(2*k)*k*w*sin(k*w*t)+a0(2*k+1)*k*w*cos(k*w*t);

phi2dot=phi2dot-a0(2*k+M)*k*w*sin(k*w*t)+a0(2*k+1+M)*k*w*cos(k*w*t);

end

z=[cos(rotangle) -sin(rotangle); sin(rotangle) cos(rotangle)]*[phi1 phi1dot; phi2 phi2dot];

phi1=z(1,1); phi2=z(2,1); phi1dot=z(1,2); phi2dot=z(2,2);

d1=l0^2*(64*cos(phi1)+64*cos(phi2)+24*cos(phi1)*cos(phi2)-32*sin(phi1)*sin(phi2)+12*cos(phi1)^2 ...

+12*cos(phi2)^2+8*cos(phi1)*cos(phi2)^2+8*cos(phi1)^2*cos(phi2)+7*cos(phi1)^2*cos(phi2)^2 ...

-16*cos(phi1)*sin(phi1)*sin(phi2)-16*cos(phi2)*sin(phi1)*sin(phi2) ...

-11*cos(phi1)*cos(phi2)*sin(phi1)*sin(phi2)+98);

G1=dlarray(zeros(3,2));

G1(1,1)=-(l0^3*(288*sin(phi1-phi2)+48*sin(phi1-2*phi2)+4*sin(phi1+2*phi2)+22*sin(2*phi1+phi2) ...

+55*sin(2*phi1)-41*sin(2*phi2)+11*sin(2*phi1+2*phi2)+96*sin(phi1+phi2)+468*sin(phi1)-186*sin(phi2)))/12;

G1(1,2)=(l0^3*(22*sin(phi1+2*phi2)-288*sin(phi1-phi2)+4*sin(2*phi1+phi2)-41*sin(2*phi1)+55*sin(2*phi2) ...

-48*sin(2*phi1-phi2)+11*sin(2*phi1+2*phi2)+96*sin(phi1+phi2)-186*sin(phi1)+468*sin(phi2)))/12;

G1(2,1)=-(l0^3*(80*cos(phi1)+28*cos(phi2)+108*cos(phi1)*cos(phi2)+22*cos(phi1)^2+14*cos(phi2)^2 ...

+34*cos(phi1)*cos(phi2)^2+11*cos(phi1)^2*cos(phi2)-11*cos(phi1)*sin(phi1)*sin(phi2) ...

+2*cos(phi2)*sin(phi1)*sin(phi2)))/3;

G1(2,2)=-(l0^3*(28*cos(phi1)+80*cos(phi2)+108*cos(phi1)*cos(phi2)+14*cos(phi1)^2+22*cos(phi2)^2 ...

+11*cos(phi1)*cos(phi2)^2+34*cos(phi1)^2*cos(phi2)+2*cos(phi1)*sin(phi1)*sin(phi2) ...

-11*cos(phi2)*sin(phi1)*sin(phi2)))/3;

G1(3,1)=(l0^2*(96*cos(phi1)+36*cos(phi1)*cos(phi2)-48*sin(phi1)*sin(phi2)-12*cos(phi2)^2 ...

+12*cos(phi1)*cos(phi2)^2+11*cos(phi1)^2*cos(phi2)^2-24*cos(phi2)*sin(phi1)*sin(phi2) ...

-11*cos(phi1)*cos(phi2)*sin(phi1)*sin(phi2)+82))/3;

G1(3,2)=-(l0^2*(96*cos(phi2)+36*cos(phi1)*cos(phi2)-48*sin(phi1)*sin(phi2)-12*cos(phi1)^2 ...

+12*cos(phi1)^2*cos(phi2)+11*cos(phi1)^2*cos(phi2)^2-24*cos(phi1)*sin(phi1)*sin(phi2) ...

-11*cos(phi1)*cos(phi2)*sin(phi1)*sin(phi2)+82))/3;

z1=G1(1,1)*phi1dot+G1(1,2)*phi2dot;

z2=G1(2,1)*phi1dot+G1(2,2)*phi2dot;

dx0dt=dlarray(zeros(4,1), ’SS’);

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s



32

dx0dt(1)=cos(theta0)*z1-sin(theta0)*z2;

dx0dt(2)=sin(theta0)*z1+cos(theta0)*z2;

dx0dt(3)=G1(3,1)*phi1dot+G1(3,2)*phi2dot;

dx0dt(1:3)=dx0dt(1:3)/d1;

end
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