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Swimming and steering of artificial microswimmer in viscous fluid

Aine Zhang
Shanghai High School International Division

Nature is alive with all kinds of swimming microorganisms. The research on the locomotion
of these microswimmers helps us not only to understand the micro world but also to engineer a
variety of useful artificial devices. This report investigates swimming behaviors and steering of a
microswimmer in a viscous fluid. We begin with background and then introduce a mathematical
model of the microswimmer under study. The analytic expressions of dynamics are explicitly derived,
which enables us to study basic properties of time evolutions and to examine symmetries in the
dynamics as well as their ramifications on the swimming trajectory. Using Green’s formula, we reveal
the relation between gait symmetry and net rotation. Then we perform comprehensive investigations
on the gaits with symmetric patterns and their resulting swimming trajectories. Finally,swe study
the steering of microswimmer by formulating it into an optimization problem and selving_ it by
gradient algorithm. We apply sophisticated Automatic Differentiation tools to calculate the gradient
efficiently. Various optimization results are discussed, especially those of steering by'symmetric gaits.
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I. INTRODUCTION

Nature is alive with all kinds of swimming microorganisms, e.g., protozoa, bacteria, algae, and sperm cells. These
microorganisms move around by continuously changing their body shapes. Locomotion is one of their fundamental
survival skills, as they need to move for nutrition, to evade predators or toxins, and to get fertilized, among others.

The governing physical laws in this micro world are completely different from those at macro scale. This is a world
of low Reynolds number as Nobel laureate E. M. Purcell pointed out in his seminal talk [12]. The locomotion herein
presents a different set of challenges, and these microorganisms have developed effective swimming strategies after
evolving millions of years.

Researchers have strong interests in understanding these strategies [10]. This not only brings in new knowledge to
biology, mechanics, mathematical control, and robotics, but also helps to engineer micro scale devices that can propel
themselves to fulfill biomedical tasks such as medicine delivery and artery unblocking.

In this research we aim to study a prototype artificial microswimmer, i.e., three-link swimmer, proposed by«Pur=
cell [12]. With a simple geometric configuration, this device contains all the necessary ingredients to-study swimming
and steering in a low Reynolds number world. It has thus attracted increasing research interests in the past few
decades [11].

Based on a mathematical model of the microswimmer from the literature, we first derive the analytic expressions
of complete swimming dynamics. This leads to the study of basic properties of time evolutions, symmetries in the
dynamics, and net rotations. Moreover, we perform comprehensive investigations-on the gaits with'symmetric patterns.
We then study the steering of the microswimmer to a prescribed location andorientation by. formulating it into an
optimization problem. This is subsequently solved by gradient descent algorithm with Automatic Differentiation tools.
Various optimization results are discussed, especially those of steering by symmetric gaitss, This project manifests
nicely how mathematics can be utilized to analyze and solve physical problems.

II. BACKGROUND AND MATHEMATICAL MODEL

In this section, we will introduce some background knowledge about theumicroswimmer in a viscous fluid, and then
present a mathematical model of three-link microswimmer’[5;,7, 11].

A. A world with low Reynolds number

To study swimming behaviors, we start from<the famous Navier-Stokes equation in fluid mechanics. The flow field
u and pressure p of a fluid satisfy

0
—Vp § IV u = p +plu- V), (1)

where p is the fluid density, n the viscosity; together with some appropriate boundary conditions.

The Navier-Stokes equation’is one of the most difficult problems in mathematics, as it was among the seven
Millennium Prize problems.raised by the Clay Mathematics Institute in 2000. Fortunately, we do not need to solve
this equation to study the behaviorsofmicroswimmers—the physical nature greatly simplifies the mathematics. Define
the Reynolds (Re) number of a swimming object as the ratio of its inertial force to viscous one, i.e.,

avp

Re = ,
n

wherewa represents the object size, and v the surrounding fluid velocity [12].

The Reynolds number is a dimensionless quantity that characterizes different flow regimes. Microswimmers have
very low Reynolds numbers. For example, a swimming E. Coli in water at normal atmospheric pressure and room
temperature has-it around 10~%. In comparison, a human swimming in water has Reynolds number around 10°, and
a goldfish around 10% [12].

In' a low Reynolds number world, viscous force dominates inertial one. The physical consequence is that every action
has.only instantaneous effect, and time makes no difference—only shape changes. Therefore, it is safe to discard the
time dependent terms in the right hand side of Eq. (1) (i.e., inertial terms) and obtain the Stokes equation:

—Vp+nV?u=0. (2)
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FIG. 1: In macro world, a scallop can propel itself toward right by opening its shell slowly and closing it quickly. However, this
strategy does not work in a low Reynolds number world, since each opening makes a movement that will be canceled by later
closings.

FIG. 2: Geometric configuration of a threezlink microswimmer thatc¢an move around by varying its two joint angles ¢1 and ¢2.

A microswimmer can propel itself by deforming;its shape in a certain pattern that is often called a gait (or stroke). A
famous result is the Scallop theorem [12], which(asserts that a reciprocal gait generates no net motion. Here reciprocal
gait means a sequence of shape changes followed by the same sequence in reverse. This can be illustrated by Fig. 1.
In macro world, a scallop can propel itselftoward right by opening its shell slowly and closing it quickly,. However,
this strategy does not work“in"a low Reynolds number world. This is because the scallop has only one joint—the
movement gained from, the opening.will\be canceled by later closings and thus prohibits it from moving anywhere.

Naturally, thessimplest microswimmer that can move around has at least two joints. This leads to the three-link
microswimmer,originally proposed by Purcell [12] and recently realized in the laboratory [9]. In this research, we will
investigate.mathematical properties of its swimming and steering.

B. Mathematical model of three-link microswimmer

This subsection introduces a mathematical model of the three-link microswimmer. There exist several different
models, and we mainly follow the one developed in Ref. [11].

Fig. 2 illustrates the geometric configuration of a three-link microswimmer. Label the central link as 0, and two
lateral\links/as 1 and 2. For computational simplicity, assume the lengths for all three links as 2l and their masses
are evenly distributed. Link 0 and link 1 are connected by joint J;, and link 0 and link 2 by J5. The joint angles ¢
and @2 describe the rotations of link 1 and link 2 with respect to the central link.

Fix a coordinate system O, X;Y; to which all the objects can be referenced. This is usually called base or world
frame in mechanics [13]. Denote the middle point of link ¢ as O; and attach a body frame O,X;Y; to it, where i = 1,
2, 3. The coordinate of O; in the base frame O, X}Y; is represented by a position vector p; = [z, 1], and the
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FIG. 3: (a) A square gait in counterclockwise direction for the three-link microswimmer; (b) joint angles¢; and ¢2 asfunctions
of time ¢.

. . - _— - . .o . . .
orientations of J;0q, J101, and J>0 are represented by 6y, 01, and -, respectively: Denote the pesitive z direction
of link 7 as «; in the base frame. Then, the angles ; can be written as

o =ap, Oh=m+ar=m+00—¢1, 0O2= ax=by+ pa. (3)

Definition 1 (Posture and Gait) Define the posture of link"i-as a, vector xy consisting of the position vector p; of
its center O; and the link orientation #; in the base frame, i.es,

v i=0,1,2!

A gait (or stroke) is a continuous function ¢(#) = [¢1(t), p2(#)]Tof joint angles on time interval [to, ] with ¢(tg) =
o(ty)-
The posture describes the state of a link4n the base frameysand the gait forms a closed path in the ¢;¢2 plane. The

three-link microswimmer moves around. by applying gaits, that is, varying its two joint angles.

Example 1 (Square gait) Figi 3 shows a square gait [12]. The initial condition ¢1(0) = ¢2(0) = 5 is marked by a
black circle. This gait contains four legs to form a«closed path:

1. Leg 1 (black): ¢y(decreases from % to,—%, and ¢2 keeps constant at %
2. Leg 2 (red)s ¢y /keeps constant at —Z, and ¢ decreases from Z 3 to —%,

(
(

3. Leg 3 (darkgreen): ¢; increases from —% to %, and ¢ keeps constant at —%;
(

4. Leg 4(orange): ¢1 keeps constant at %, and ¢, increases from —% to %.

Fig.8(b).plots an example of how ¢;(t) and ¢2(t) evolve as functions of time. The gait can evolve in different time
trajectories; howevers this will not affect the resulting swimming trajectory as shown later.

From the geometric configuration in Fig. 2, the postures x; and xs can be represented by

T cos by cos o [ o
X1 = |y1| =%x0—1lp |sinfy| — Iy |sinay | + 0 , (4)
91 0 0 mw— (251
[25] [cos 6y | [cos ao | [0
Xo = |yo| =% +1p |sinfg| +1p [sinas| + |0 {. (5)
0o 0 0 o5



Take derivatives of Egs. (4) and (5):

1 ~ | —sinty . . —sinag 0
)'(1 = yl = 5(() — l()o() COS 90 — l()(@() — ¢1) COS (x1 — 0
_91 0 0 ¢1
%0 + lo sin 901?-0 + lgsin Oé1(éo - ¢51)
= |90 — locos 909q - lo_COS 041(90 - ¢1) (6)
L 0o — ¢1
[1 0 Ipsinfy + losinay To —lpsinayg 0 ¢)
= |0 1 —lpcosby —lpcosar| |Yo| + | locosar O [ -1] ,
00 1 6o 1 o] L
— —_—
D1 El
and
B2 ~ | —sinbp ] ] — sin ap 0
Xo = |Y2 | =%o+lobo | cosy | +1lo(fo+ ¢2) | cosaz ¢/~ [0
_92 0 0 ¢2

[%0 — lo sin 901?-0 —lpsinaz (é_o + ‘252)
= |90 + lpcos 909q + lo_COS a2 (0o + ¢2)

L 0o — @2 (7)
_1 0 —lo sin 90 — ZO sin (6] Ib() 0 —l() sin (6] ¢
= |0 1 lgcosby+ lpcosas Yo | #4071 cos az { -1] .
00 1 N 0 P2
_—
D2 E2

Denote the linear velocity of center O; in the base frame.as v; and the angular velocity as w;, i.e.,
. To . Ty . o
V = = . Vv 3 = . Vv = = .
0= Do L/o} > 1L=D1 Lﬂ] 5 2 = P2 [yJ )

w0=907 </-11=6"1=49.0—<Z.>17 w2=92=90+q52.

<= l= 1)

From Resistive Force Theory (RFT) [4], the viscous drag force f; experienced by link 7 can be decomposed into the
vector sum of a tangential force £ and’a normal force f?, where 7 is proportional to the tangential velocity v¥ and
! proportional to the normal velogity vY:

and

Then,

fZJ' = 7Cxl()Vg;, fly = 7Cyl()V,?L-J, (8)

and ¢¥"=.2c¢% Notice that the unit tangential vector is [cos a;, sin ;)T and the unit normal vector is [— sin oy, cos o] T

Thus'we can write

—sin oy

r _ |cosy
cos q;

: v _
) cosa; sinay| vy, VY=
smaz] [ ¢ Z] & i {

] [—sinq; cosay) v, (9)
Substitute Eq. (9) into (8):

cos? o sinao; cosa; |
sin ay; cos oy sin? a; v

Cos oy
sin ay;

ff = ="l [ } [cos o; sin ai} v, = —c"lg [

. . 2 .

— sin oy . sin® oy — sin oy cos oy

£/ = —cYly Yl [=sina; cosas] vi = —c¥ly . ’ 5 vy
cos — sin a; cos oy cos® oy



Hence,
. 1+sin?q; —sino;cosq;
f = f* fy _ ) 7 i 1 .
=t c*lo [—smaicosai 1+ cos? oy } ‘
Also from RFT, the torque m; on link i can be written as m; = f%cxlgwi. Putting together, we have
1 + sin? o; —sina;cosa; 0
fi . 2 V;
F, = = —c"lp |—sinajcosaoy; 14cos?a; O . (10)
m; Wi
0 0 172
6“0
P

Moreover, the net hydrodynamic force and torque in the frame Oy X(Yj is given by
Fuet = Fo + DI Fy + DYFy = —c®lo(Poko + DY Pix; + DI Poxs).
Plugging in Egs. (6) and (7):
Foct/(—c"lo) = PoXo + D{ Py(D1%o + E1) + D3 Pa(Dako + E2) a1
= (Py + DT P.Dy + DI PyDy)%o + (DT PLE{: DEP, ).

We know that the microswimmer experiences zero net force and torque, i.ef F,¢ = 0. Rearranging Eq. (11), we
obtain

Xo = ng] = —(Py + DY P.Dy + DY Py Do) H(DEPLE) + DY Py (12)

This is the fundamental mathematical model that we will be using te study_three-link microswimmer locomotion. It
expresses the linear and angular velocities xg of the middle peint Qg of link.0"in terms of the applied gait ¢ and its
velocity ¢. The swimming trajectory xo(t) can then be obtainedby solving Eq#(12) with common numerical software
such as Matlab.

III. SWIMMING DYNAMICS AND SYMMETRY

With the mathematical model of the microswimmer (12),.we are ready to study its swimming dynamics and
symmetry. We first derive the detailed analytic expressions for swimming dynamics, and then represent it as a
dynamical system on the special Euelidean/group .SE(2). We investigate basic properties of time evolutions and
analyze the symmetry in dynamics, gaity and swimming trajectory. Using Green’s formula, we reveal how gait
symmetry affects net rotation.

A. Analytic expressions and basic properties of dynamics

We first derive/the/analytic expressions for Eq. (12), which is the governing equation of three-link microswimmer’s
locomotion.
Let R(6y)"be a rotation matrix, which rotates a vector by an angle of 6y counterclockwise:

_|cosby —sinby
R(0o) = [sin 0y cosby } ’

We know that vy in Eq. (12) is the linear velocity of Op in the base frame, and R(—6y)vy is its velocity in the Oy XYy
frame. In this framé, the central link will not feel anything about 6. Therefore, R(—6y)vo cannot be a function of
fp—it has to be a function of ¢ and ¢o only and we write it as

R(=00)vo = 7-Gud: (13)

where d; is the determinant of the matrix Py + DlTPlDl + DQT PoDs:

dl/lg = 8(cos 1 + cos ¢2)(cos @1 cos P — 2sin ¢y sin ¢ + 8) + 24 cos P1 cos P2 — 32 8in ¢y sin Py

14
+12(cos? ¢ 4 cos? ) + Tcos? p1cos? o — 11 cos ¢y cos o sin ¢y sin g + 98. (14)



Then Eq. (12) can be rewritten as

1 Gll G12
Do = Vo = d—lR(eo) [G%l G%2:| o,
—_——
Go (15)

1

éozwozdl

[GL G o,
G

Using Matlab Symbolic Toolbox (see Appendix A for codes), we can explicitly calculate the analytic expressions of
the entries in G, as

Gt 55 31 41 1
5 = —39sin¢y — — sin2¢; + - sin g + — sin2¢y — 4sin (P — 2¢2) — - sind- 2¢2)
s 12 2 12 3
11 . ) 11 . .
— 5 sin (2¢1 + ¢2) — 24 sin (¢1 — ¢P2) — Ths (2¢1 + 2¢p2) — 8sin (¢1+ P3),
G2 55 31 41 1
5= = 39sin¢y + — sin2¢y — —sing; — — sin2¢; — 4sin (201 — @) + - sin (2¢1 + ¢3)
s 12 2 12 3
11 . ) 11 . .
+ < St (1 + 2¢2) — 24 sin (1 — P2) + The (201 + 2¢p2) F 8'sin (b1 + ¢2),
(16)
21 2 22 14
% = 783—0 COS 1 — §8 coSs ¢y — gcos2 o1 — gcos2 02 —36.c08'01COs g
11 4 11 2
+ 3 COS (1 Sin @1 sin ¢ — % C0S (108> ¢y — ?COSQ @1'COS ¢g — 3 COS ¢ sin ¢y sin ¢o,
22 2 22 14
(}”é’ = 783—0 COS (g — §8 cos ¢ — gcos2 02 — gcos2 @1 — 36 COS 93-€08 P2
11 4 11 2
+ 3 COS ¢9 sin ¢y sin gy — 3gcos2 b1 CoS Oy — 3 cos.Prcos? py — 3 coS ¢1 sin ¢y sin ¢o,
and the entries in G, as
Gll
Z—‘; = 32cos ¢ + 12€0s p1cas o — 16810 sin ¢y — 4cos? (o + 4 cos ¢ cos® po
0
1 5 9 : . 11 . . 8
+ gcos Drcos” ¢y =~ 8 cos ¢y Sinvg; sin po — 3 COS (1 COS (2 Sin p1 Sin P + 3
(17)
G12
Z—‘; = —32C08 9.~ 12 cO8G1'cO8Dg + 16 sin ¢y sin ¢y + 4cos? ¢y — 4cos? ¢1 cos pa
0
11 11 82
= ?cos2 ¢1cos2 P9 + 8 cos ¢ sin ¢ sin o + 3 COS (b1 COS (2 SiN P71 Sin o — 3

We now represent the posture dynamics in Eq. (15) by a dynamical system on the Lie group SE(2). Let us introduce
the following’definition [16].

Definition 2 The special Euclidean group SE(n) is defined as

R p

SE(n) = {A € Rm+1)x(nt1) ‘ A= {0 .

],RRT:I,peRn}.

The posture of'the central link xo(t) = [20(t),%0(t), 00(t)]T can be represented by a matrix in SE(2):

cosBo(t) —sinby(t) | zo(t)
T(xo(t)) = | sinfp(t) cosby(t) |yo(t) | . (18)
0 0 | 1




Taking derivative of Eq. (18) and plugging in Eq. (15), we obtain

I 79.() sin 9() 79'() COS 9() L].S'() 79.() sin 9() 79.() COS 9() 1 ]
. . . . . —R(0y)G
T = 9() COS 9() 79() sin 9() y() - 9() COS 9() 79() sin 9() d1 ( O) U(z)
0 0 0 0 0| 0
COS 9() — sin 9() Zo 1T 0 79.() iG ¢
= | sinfy cosby |yo 6y 0 | dy "
| 0 0 LJLo o] o0 (19)
I COS 9() —sin 9() o T 0 *GWQZ.S ;
\ 1 :
= S1n 9() CcOS 9() Yo d_ Gw (;5 0 G’U(b
|0 0 |1 ]™ [0 0 | 0O
A(6,9)
Hence we can obtain
T =TAS,d), Tlto) =T(xo(to)), (20)

where xq(to) is the initial posture.
For the gait ¢(t) = [p1(t), ¢2(t)]T on [to,t], the state transition matrix.®(f;to) can be defined as the swimming
trajectory starting from the initial posture xo(tg) = [0,0,0]7. That is, it satisfies

(i)(t,to) = q)(tvtO)A(éa ¢)a cI)(t07t0) =1 (21)

Now the swimming trajectory T'(¢) can be written as T'(t) = Tixq(to) )P (¢, Lo since

T = T(xo(to)® = T(x0(to)) Dt ta)Ald, $) = TA(S, 9), and
T(to) = T(x0(to))®(to,to) = P(xafto))-

As its name suggests, the state transition matrix, ®(Z,%y)describes theymapping from the initial posture 7'(¢g) to the
final one T'(t), and it has these properties [3]:

(D(t,to) ~ @(tatl)q)(tlvt())a (22)

q)—l(tat()) = ‘b(to,t). (23)

From the expression of A in Eq.«(19);we can obtain, the following propositions on the time evolution of swimming
dynamics.

Proposition 1 (Time invariant) If a.gait ¢(¢) iS delayed by 7, the resulting state transition matrix is also delayed
by 7.

Proof: Let W(tyty +7) be the state transition matrix for ¢(¢ — 7) with ¢t >ty + 7. Then

W(t,to + 70 Wt to +7)A(P(t —7),0(t — 7)), ¥(to+7,to+7)=1.

Let t; =t —; where tq > to. We have A(¢(t — 7), ¢(t — 7)) = A(S(t1), d(t1)). Hence

Uty +71,t0 +7) = W(ty + 7, t0 +7)A(P(t1), 4(t1)), V(to+T7,to+7)=1.

Comparing with-Eqe (21), we know that U(t + 7,t0 + 7) = (t,t0), d.e., U(t, to +7) = P(t — 7, ¢0). m

Hence, the dynmamical behavior is time invariant, and it is independent of the initial time ¢;. We can then assume
to = 0 and write the state transition matrix as ®(t).

Proposition 2 (Time scaling) If the time of a gait ¢(¢) is scaled by a factor k, the time of the resulting state
transition matrix is also scaled by k.
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Proof: Let ¥(¢) be the state transition matrix for ¢(kt) with ¢ > 0. Then
W(t) = W) A(@(kt), d(kt)), W(0)=1.

Let t; = kt, where t; > 0. We have A(¢(kt), ¢(kt)) = kA(¢(t1), ¢(t1)). Hence

(01 /) = B WA, 0(0)), ¥0) = I
Comparing with Eq. (21), we know that U(t/k) = ®(t), i.e., U(t) = (kt). E

This tells us that the swimming trajectory depends only on the gait shape of joint angles but not on how fast it
traverses the gait, which was also previously revealed in [12]. Without loss of generality, we can fix a final time, say;
ty =1, in our numerical simulations.

With these two properties, Egs. (22) and (23) can be rewritten as

(I)(tl +t2) = (I)(tl)q)(tg), (24)
Ht) = ®(—1). (25)

Furthermore, we have the following proposition if reversing the time evolution of ¢(t).

Proposition 3 (Time reversal) For the gait ¢(—t), the resulting state transition matrix is

a(—t) = 071 (p) = | @) ~AC&Hpe®) 26)

Proof: Let \Il( ) be the state transition matrix for ¢(—t) with > 0. In Proposition 2, let k¥ = —1. We obtain that
U(t) = &(—t) = ®~1(t). Explicit calculation of ®~1(t) leads tothe second equality=in Eq (26). E

Remark 1 This proposition can be used to interpret Purcell’s scallop=theorem. If a microswimmer first applies a
gait ¢(t) and then its time reverse ¢(—t), the compléte state transition matrix is

DYD () =

which indicates that it does not have any net motion.

B. Symmetry in dynamics

We now study the symmetry in the’swimming dynamics (21). In particular, we are interested in finding out what
if we flip the sign of ¢, i.e.,~¢. becomes —¢; or interchange the order of ¢ and ¢s, i.e., ¢ becomes J¢, where

01
J= L 0} |
The sign flip corresponds to the symmetry with respect to the origin, whereas order interchange the symmetry to the
line ¢2 = ¢1.
Some of thiese properties were previously examined by applying advanced mathematical techniques [1, 7]. Observing
that the analytic expressions of di, G,, and G, in Egs. (14), (16), and (17) are all composed of sinusoidal functions
of ¢1 and ¢a5 we will directly make use of odd and even symmetries in sine and cosine functions.

From, the expression of d; in Eq. (14), we know that d; remains the same under sign flip and order interchange,
i.€.,

di(¢) = di(—¢) = di(J ). (27)
Next check .G, and G, in Eq. (15). For sign flip, the first row of G, is odd symmetric:
Gy(—¢) = =G (9), (28)

and the second row of G, and G, are even symmetric:

Go(=0) = G3(9). Gu(—¢) = Gu(d). (29)
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For order interchange, we have that

Gl (2, 01) = =G (b1, ¢2), Gil(d2.¢1) = G2 (d1,02), GL(d2,01) = —GL2 (o1, ¢2),

which can be written compactly as

Gy(J9) = =Gy(9)], Gi(Jo) = Gy(e)], Gul(Jd) = —~Gu(9). (30)

We have the following results on the relationship between gait symmetry and swimming trajectories.

Proposition 4 (Sign flip) Suppose that a three-link microswimmer applies a gait ¢(¢) and obtains the state tran-
sition matrix ®(¢). If the microswimmer applies —¢(t), the resulting state transition matrix is

cosbp(t) sinby(t)| xo(t)
Dy(t) = MyP(t)A1 = | —sinbo(t) cosby(t) | —yo(t) |, (31)
0 0 | 1
where A; = diag{1,—1,1}.
Proof: Taking derivative of ®4(¢):
By = A @A = A1 PA(D, )) A1 = A1 PA1ALA(9, 9)A1 = D1 ArA(9, §)Ase (32)
From Eq. (19), we get
) . 1 0 —Gu(-9)(-9) Gé(—@(—ﬂ?) Y 0 Gu(9)é 2(¢)<z>
(7(7257 7¢) - dl(_q/)) GW(_(g)(_¢) 8 Gv(_(z;)(_¢) i dl (¢) _Gw0(¢)¢ 8 y1(¢)¢ (33)
= AIA(¢a d))Ala

where the second equality is obtained from Eqgs. (27),(28); and (29). Substituting Eq. (33) into (32), we have

D) = Oy A(— ¢ =), D1 (Q)= NP (0)A; = .
Therefore ®(¢) is the state transition matrix for —=g(¢). =
The sign flip maps a gait ¢(t) to #¢(¢). From Eq. (31), this transforms the original swimming trajectory from

[Zo(t), yo(t), 00(t)]" to [xo(t), —yo(t), =06 (E)*"

Proposition 5 (Order interchange) Suppose that a three-link microswimmer applies a gait ¢(t) and obtains the
state transition matrix ®(¢). If the microswimmer‘applies J¢(t), the resulting state transition matrix is

cosfo(t) sinbo(t) | —xo(t
Dy(t) =A2P(t)Ay = | —sin 90 cos Oy (t ‘ yo( (34)
0 0 | 1
where Ay =diag{—1,1,1}.
Proof: Taking derivative of ®5(1):
Dy = Ao®Ay = Ag®A(¢, )Ag = Ag®A Ay A(¢, ) Ay = Do A, P)As. (35)
From Eqv (19)5we get
) 0 —Gu(J9)(JP) Gi(JP)(J)
(Jo,J9) Gu(J9)(J9) 0 GA(J9)(J9)
) 0 Gu(@)J(J9) —Gi()I(J9) (36)
= —Gu(9)J(J9) 0 GA(8)J(J9)
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where the second equality is from Eqgs. (27) and (30). Substituting Eq. (36) into (35), we have
By = B A(J, J), Da(0) = As®(0)As = 1.
Therefore @5 is the state transition matrix for J¢(t). ]

The order interchange maps a gait [¢1(t), d2(t)] to [p2(f), $1(t)]. From Eq. (34), this transforms the original
swimming trajectory from [xq(t), yo(t), 0o(t)]T to [—zo(t), yo(t), —00(t)]".

Remark 2 Combining these two leads to a new symmetry with respect to the line ¢ = — ¢y, which maps [¢1(t), P2 (¢)]
o [~¢2(t), —¢1(t)] and transforms the swimming trajectory from [zo(t),yo(t), 00 (t)]T to [—zo(t), —yo(t), 00 (t)].

C. Green’s formula and net rotation

We observe that the dynamics of orientation 6y in Eq. (15) depends on only the applied gait, ¢nand its velocity (;5

From Green’s formula
j{de—i—Qdy = // (— — —) dzdy,
we can obtain

o(ts) — 0o(0) = f Gu((d;) do1 + f d@ / / ( R Gu 8‘22 (2111(%)) do1des

/ / 24d5 dp1dpz.

Using Matlab Symbolic Toolbox, we can get the analyti¢ expression of W (¢) as

W (1, p2) = —19278(sin ¢1 + sin ¢2) — 14960(sin2¢i+ sin 2¢h2) & 1342(sin 3¢ + sin 3¢a) — 22(sin 4o + sindgs)
—5012sin(¢1 + ¢2) + 3420 sin(2¢1+ 2¢2 )t 29280 (3¢1 + 3¢2) + 66(sin(3¢1 + 4¢2) + sin(4dgy + 3¢2))
+ 10380 (sin(¢1 — 2¢2) + sin(pa—2¢1)) — 2248(sin(d1 + 2¢2) + sin(2¢1 + ¢2))
+ 1276(sin(¢1 — 3¢2) + sin(p2 —3p1)) — 920(sin(P1 + 3¢p2) + sin(3¢1 + ¢2))
+ 22(sin(¢1 — 4¢2) + sin(dg’= 4¢1)) — 132(sin(d1 + 4¢2) + sin(4é1 + ¢2))
+ 240(sin(2¢1 — 3¢2) =+ sin(2¢2 — 3¢1)) +756(sin(2¢1 + 3¢2) + sin(3¢1 + 2¢2))

+ 11(sin(2¢1 — 4¢3) + sin(2¢2 = 4¢1) ) 121(sin(2¢1 + 4p2) + sin(4¢1 + 2¢2)).
(38)
From Eq. (37), we know that the net rotation generated by a gait ¢(¢) at the final time ¢; is equal to the double
integral of W/24d? over the interior area encircled by ¢(t). If ¢(t) moves counterclockwise and gains more positive
double integral than negative one, the microswimmer gets a positive net rotation. It is easy to see that W has the
following symmetry:

W(*(ﬁl, 7¢)2) — 7W(¢1; ¢2)7 W(¢2a ¢)1) = W(¢1a ¢2)7 W(7¢27 7¢)1) - 7W(¢1; ¢)2) (39)
We plotathe stirface and contour of W/24d? vs ¢1 and ¢s in Fig. 4.

Example 2 Consider the net rotations generated by the three gaits in Fig. 5. These gaits do not intersect themselves
and keepithe same orientation. Define a positive orientation as when one moves along a gait, the encircled region is
always on the left; The starting point is marked by a black circle.

e Fig. 5(a): The gait is odd symmetric with respect to the origin. From Eq. (39), it encircles positive integral
exactly canceled by negative one, and thus the microswimmer gets no net rotation from this gait.

e Hig. 5(b): The gait is symmetric with respect to the line ¢3 = ¢1. In general positive integral cannot be canceled
by negative one, and thus the microswimmer gains a net rotation.

e Fig. 5(c): The gait is symmetric with respect to the line ¢ = —¢;. It encircles positive integral exactly canceled
by negative one, and thus the microswimmer receives no net rotation.
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FIC. 4: The function W/24d3? vs ¢ and ¢s.
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FIG. 5: ((Color online) Top: three symmetric gaits plotted in colored closed paths. Each gait has two legs: the first in black
and the second in red. The background is the contour of W/24d3 as in Fig. 4(b), and the starting point is marked by a black

circle. Gait 1 is symmetric with respect to the origin, Gait 2 to ¢2 = ¢1, and Gait 3 to ¢2 = —¢1

. Bottom: the resulting
swimming trajectories.
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IV. SYMMETRIC GAITS AND TRAJECTORIES

In this section, we investigate a variety of symmetric gaits. We calculate the state transition matrix for each
symmetric segment of a gait and then piece them together to obtain the final posture. Some of these gaits yield
particularly preferable locomotions such as pure movements along zy or yo axis. These gaits can be used to form a
repertoire to accomplish certain maneuvering tasks.

A. Single symmetric gaits

We first study the gait that is symmetric with respect to a single point or axis, namely, the origin, the line ¢o = ¢y,
or the line ¢ = —¢;. Such a gait consists of two symmetric legs. Because of the time evolution properties of swimming
dynamics discussed in Propositions 1 and 2, we can consider each leg evolves on the time interval:[0, %] at the same
speed. Further, denote the first leg of the gait as ¢(t) = [¢1(t), ¢2(¢)]T and the state transitionmatrix at thé end of
the first leg (i.e., t = ) as

00590(%) —sinfo(%) xo(%)
Py = |sinfo(Z) cosby(L) wo(%)| - (40)
0 0 1

We start from Gaits 1, 2, and 3 shown in Fig. 5. These are all simple curyes; ite.s not crossing themselves.

Gait 1 (Origin). Consider Gait 1 as shown in Fig. 5(a), whose two-legs are symmetriciwith respect to the origin.
Each leg is obtained by rotating and translating a lemniscate curve'in’thé first quadrant?

P2 =272cos283, BE [O, %] . (41)

It starts from a point on the line ¢o = —¢1, which is marked by a black circle.
The second leg of the gait is then —¢(¢). From Proposition'd, we know that it generates the following state transition
matrix

00590(2) sin'dy xo(%)
Dy = AP Ay = fsinﬂo(z) cos&o(%) —yo(%) . (42)
0 0 1

The total state transition matrix for Gait 1 is then
10 aco(%)(l + cosbo(L))
5 0

® =D1By= 041 ol
0,0 1

)| (43)

It yields no net rotationas discussed earlier.

Gait 2 (¢p2 = ¢1)./Consider Gait'2 as shown in Fig. 5(b), whose two legs are symmetric with respect to the line
@2 = ¢1. It starts from a point onthe line ¢ = ¢1, which is marked by a black circle.

The second Jeg is [¢o(Ze=t), p1(% — t)], which is effectively the same as [¢o(—t), $1(—t)] from Proposition 1.
Moreover, from/Propositions 3 and 5, it yields the following state transition matrix :

cos 0p(L) —smHo( ) xo(%)coseo(z)+y0(%)sin90(%)
By =No0; Ay = sinﬁg(g) cos@(())(%) xo(g)sin%(g)IyO(E)COSGO(E) . (44)

The total state transition matrix for Gait 2 is

cos20p(L) —sin260(%) xo(%)(l +005290(%) + yo(%£) sin 26, (T%)
P =&Py = |sin20p(%) cos200(%) wo(L)sin260(L) + yo(L)(1 — cos26p(%)) | - (45)
0 0 1

1 All the other curved gaits in this section are obtained by rotating and translating lemniscates.
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FIG. 6: (Color online) Symmetric gaits and their swimming trajectories. The 1st leg is in black and the 2nd in red. Gaits 4A
& 4B are symmetric with respect to the origin, Gaits 5A & 5B to the line ¢2 = ¢1, and Gaits 6A & 6B to the line ¢2 = —¢1.

Gaits 4A, 5A, and 6A keep orientation the same in both legs, whereas Gaits 4B, 5B, and 6B change it in the 2nd leg.
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It receives a net rotation of 26o(%).

Gait 3 (¢2 = —¢1). Consider Gait 3 as shown in Fig. 5(c), whose two legs are symmetric with respect to the line
¢ = —¢1. It starts from a point on the line ¢ = —¢1, which is marked by a black circle.

The second segment is [—¢2(L — t), —¢1(L — ¢)]. From Propositions 3, 4, and 5, we know that the second leg
generates the following state transition matrix

X costy(L) sin90(§) xo(%)cos(%(%r) (%T) sinf (L)
Dy = ApA1 @7 A 1A = | —sinbp(L) cosbo(L) —zo(L)sinbo(%) + yo(%)cosbo(Z) | - (46)
0 0 1
The total state transition matrix for Gait 3 is
10 2x0(7§)
o = (I)lq)g =101 2y0(§) . (47)
00 1

It generates no net rotation as discussed earlier.

Next we study some two-segment symmetric gaits that cross themselves once, ‘e/g», in-the shape of figure 8. Assume
that they start from the intersection point.

Gaits 4A & 4B (Origin). Consider Gaits 4A and 4B whose two legs areSymmetric with' respect to the origin as
illustrated in Figs. 6(a) and 6(d), where 4A keeps and 4B changes the. orientation«n the second leg. Both gaits start
from the origin.

For Gait 4A, the second leg is —¢(t). Therefore it is the sanie.case.as Gait Iy and gains no net rotation at the final
time. Gait 4B changes the orientation in the second leg and it is then given by —¢( % —t). From Propositions 3 and
4, we know that the second leg generates the following state'transition matrix

cosOp(L) —sinby (L) “xo(L) cos (L) — yo(L)sinbp(L)
= A1cI>1*1A1 = sin@o(é) COS@O(%Q) 7$0(%)Sm90(§ é %
0 0 1

The total state transition matrix for Gait 4B is

005290(2) —sin20p(%)  zo(L)(1 — cos26p(L)) — yo(%)sin%o(%)
b =P,0, = sm290(5) cOSs 290(%) _IO(%)SiHQHO(%) + yo(%)(l + 008290(5)) (49)
0 0 1

Thus it gets a net rotation.of 26g(%).

Gaits 5A & 5B (¢2 = ¢1). Consider Gaits 5A and 5B whose two legs are symmetric with respect to the line
2 = ¢1 as illustrateddn Figs. 6(b) and 6(e), where 5A keeps and 5B changes the orientation. Both gaits start from
a point on the line ¢g = ¢;.

For Gait 54y, the second leg is {¢o(Z — t), ¢1(% — ¢)]. Therefore it is the same case as Gait 2, and it gets a net
rotation of205(£). Gait 5B changes the orientation in the second leg and thus it is [¢2(t), ¢1(¢)]. From Proposition 5,
we know that the second leg generates the following state transition matrix

COSG()(Q) sin@o(ﬁ) f:co(%)
(1)2 = AQq)lAQ = —Slneo(z) 00890(5) yo(%) . (50)
0 0 1

The total state transition matrix for Gait 5B is
of %)
P=0P= |01 —z0(%)sinbo(Z) + yo(Z)(1+ cosbp($)) | - (51)
1

Then it gets no net rotation.
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Gait | SYmmetry ?Jii’;ﬁ second leg s 00 (T) Final position [z0(T), yo(T)]
O N I T B [ e i
4B origin Yes | [=gr(—t),=d2(=0)] | M®'Ar | 200(F) [:vo(é))(:m 26:(29)01 y)j (% ??1( +)csc1:22:; ((g )))]
2,50 | ¢y = No [2(—t), ¢1(—1)] M@ Az | 260(3) [xo((g )) ijnz;:)(s 2;9(1 yj g)?l( C)S;I;Zfzg)))]
5B b2 = P1 Yes [$2(t), ¢1(2)] A2®1A> 0 [::)0((?)(; 060(;8 9;(33 (‘ ;lzl( +)CS;::; (( z)))7}
3,6A| ¢2=—¢1 | No |[-¢2(—t),—d1(~1)] | A2A1® ' AsA2 | 0 [220(5), 290(5)]
6B | da=—61 | Yes | [-6at)—en(®)] | Achi®iMiAs | 260(E) Eﬂ:o(?)(:m 0( 9; i_y)) (+ ?(1( :): g))ﬁ

TABLE I: Symmetry gaits 1-6B-and_their properties.

Gaits 6A & 6B (¢2 = —¢1). Consider Gaits 6A and 6B whose tworlegs are symmetric with respect to the line
P2 = —¢7 as illustrated in Figs. 6(c) and 6(f), where 6A keeps and 6B changes the orientation. Both gaits start from
a point on the line ¢o = —¢;.

For Gait 6A, the second leg is [—¢o(L — )51 (%5 = t)]. Therefore it is the same case as Gait 3, and gets no net
rotation. Gait 6B changes the orientation in‘the second legrand then it is [—¢2(t), —¢1(¢)]. From Proposition 5, we
know that the second leg generates the following state transition matrix

cost%(%) fsin90(7%) *%(%)
=D AMiP1A 1 As = |sinby(5) cosbo() —vo(5)| - (52)
0 0 1

The total state transition matrix for Gait 6Btis

cos 200(L) —Sin290£[§) zo(L)(1 = cosbo(L)) +y0(%)sin90(§)
D= P Py'= sin2(0;0(§) cos 280(5) —xo(%)sin%(%) + 3140(%)(1 —cosbo(3)) (53)

Then it gefs.anet,rotation of 26p(%).
Compiling all these results together, we obtain Table I. Moreover, we conclude the following proposition.

Proposition.6 A two-leg gait ¢(t) yields no net rotation if

e its two legsare symmetric with respect to the origin, and the second leg keeps the same orientation as the first
one; or

e its two legs are symmetric with respect to the line ¢ = ¢1, and the second leg changes the orientation from the
first one; or

e its two legs are symmetric with respect to the line ¢o = —¢1, and the second leg keeps the same orientation as
the first one.
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B. Double symmetric gaits

Now we look into the gaits that are symmetric with respect to both the origin and the line ¢2 = ¢, which in turn
implies that they are symmetric to ¢o = —¢; as well. Consider the gaits possessing four segments, and each segment
evolves on the time interval [0, 2] at the same speed. Denote the gait for the first leg as ¢(t) = [¢1(t), ¢2(t)] and the

state transition matrix at the end of the first leg (i.e., t = L) as

cosOp(L) —sinbp(L) zo(%)
oy = sin@o(é) 00590(%4 yo(é) - (54)
0 0 1

Gait 7. Consider the square Gait 7 as shown in Fig. 7(a), which is also presented in Fig. 3 and eriginally proposed
by Purcell [12]. The starting point is on the line ¢o = ¢, which is marked by a black circle.
The second leg is [—¢2(% —t), —¢1 (% —t)], the third [—¢y(t), —¢2(t)], and the fourth [go(F = t)y ¢1 (L = #)]"“From
Propositions 4 and 5, we know these three legs generate the state transition matrices as
By = A Aa® AgA g,
O3 = A1 P Ay, (55)
By = Ao® ' As.

The complete state transition matrix for Gait 7 can be calculated as

1 0 4ao(L)
D=3 P030, = 0T 20 0 | (56)
000 01

Therefore, this gait generates a pure zg-axis displacement with no net.retation.

Gaits 8A & 8B. Consider the gaits in Figs. 7(b)@nd, 7(d). Both start from the origin. For Gait 8A, the second
leg is [—¢o (L — 1), —¢1 (L — 1)], the third [—¢s(t),=da(t)], and the fourth [¢o(L —t),¢1(L —¢)]. This is indeed the
same as Gait 7, which generates a pure x( displacement.

For Gait 8B, the second leg is also [—(bg(% < 1), —¢(§ —t)]. However, it changes orientation in leg 3 and leg 4.

The third leg is then [¢a(t), ¢1(t)], and the fourth [—¢1(% = t), —¢2(LE —t)]. From Propositions 4 and 5, we know
these three legs generate the state transition‘matrices as

D= A1 Ao® AgA g,
P5.= NP1 A, (57)
By = AP A,.

The complete state transition matrix for, Gait 8B is calculated as

10 0
D =010,03%, = |0 1 4yo(L)] . (58)
00 1

Therefore,this gait generates a pure yp-axis displacement with no net rotation.

Gaits 9A & 9B« Consider the gaits in Figs. 7(c) and 7(e). Both start from the origin. For Gait 9A, the second
leg is [p2(% —t), ¢1(% — )], the third [—¢1(t), —¢2(t)], and the fourth [—¢o (% — ), —¢1 (% —t)]. From Propositions 4
and 5, we know these three legs generate the state transition matrices as

Py = Ap® Ay,
O3 = A1 P Ay, (59)
By = A As® ARA,.



@2

Yo

FIG. 7: (Color online) These gaits are symmetric with respect to both the origin and ¢2 = ¢ and have four legs.

w3

k!

o

Lok

el

1.5

1.0

0.5

A A A
N N N
Y . A
Y A
Y OO
N, N, N, o
7 L Vel N
5 -3 o 3 3
1
-1.0 —0.5 0 0.5
o
(a) Gait 7.

@2

Yo

us
2
1
0
.
-3
“§ -% o ¥ %
®1
0.5
0
—0.5
—0.5 0 0.5
o
(b) Gait 8A«

19

us
2
1
4 0
1
3
5 % o0 % 3
o1
0.5
£ 0
—-0.5
—0.5 0 0.5
To
(c) Gait 9A.

)-3 o 1 3
b1
0.5
0.5
S 0 S 0
—0.5
—0.5
—0.5 0 0.5 —0.5 0 0.5
o xo
(d) Gait 8B. (e) Gait 9B.

The first leg

is in black, the second in red, the third in dark green, and the fourth in orange. The starting point is marked by a black circle.
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. Change . .
Gait Oriengt. Legs 2, 3, and 4 00(T) Final position [zo(T"),yo(T)]
By = A1 A2® AoAy,
7, 8A No O3 = A1 P1Ay, 0 [4z0(F), 0]
By = Ay®T A
By = A1 A2® P AoAy,
8B Yes D3 = Aa®i Ay, 0 [074110(%)]
by = AMOTIA
P2 = A2®7 ' Ao, [220(Z)(1 + cos260(%)) + 2yo (%) sin 260(%),
9A No O3 = A1 D1 Ay, 0 T T TN o T
By = A Ao® AN, 2y0(£)(1 = cos200(%)) + 2z (%) sin 260 (L)]
_ —1 .
Py = Ao ®y ' As, o | [200 = cos 260 (%)) (wo(F) + wo(F) cos 200 (%) A yo (%) sin 200(F)) ,
9B Yes @3 = Ao A1 P1A1 A, 460 (7) T T T T T . T
b, = A1<I>1_1A1 —2c0s 260 (5)(yo(5) — yo(5) cos 200(5) + wo () 5111200(1))}

TABLE II: Symmetric gaits 7-9B and their properties.

The complete state transition matrix for Gait 9A is calculated as

10 23:0(7%)(1 + COS290(7€)) + 2y0(§)sin290(§)
b = @1@2@3@4 =101 2y()(z)(]. — COS 29()(1)) N 21‘0(2) sin 200(2) . (60)
00 1

For Gait 9B, the second leg is [¢2 (4 —t), ¢1 (£ —1)], the third{—da(t); —¢1 ()], andithe fourth [—¢1 (£ —t), —d2 (L —1)].
From Propositions 4 and 5, we know these three legs generate'the state transition matrices as

By = Ao O Ao,
Og = Ao A1 P1 A1 A, (61)
Py=A D Ay

The complete state transition matrix for four legs.is calculated as

005490(7€) —sin490(%) 2(1— 005290(%))(300(%) + xo(%)cos%’o(%) + yo(%)sin%o(%))
b = @1@2@3@4 = sin490(z) COS49()(%) —2 COSQ@()(%)(]JQ %) — Yo %)COS 29()(%) + Z()(%)Sin290(%))
0 0 1

These properties of Gaits. 7-9B and their final orientations and positions are summarized in Table II.

V. " STEERING THE MICROSWIMMER

In the previoussection, we have looked into a collection of symmetric gaits that can drive the three-link microswim-
mer to eertain final posture. In this section, we study the converse problem, that is, finding a gait that steers the
microSwimmer to seme,desired final posture.

A. A constructive approach

We begin with a simple constructive approach to solve this problem. To steer the microswimmer to a desired
location, we can divide the task into a series of movements along xg or yq directions. For example, if we want to start
thesswiminer from the origin and move it to the target location [zd,yd] marked as a red dot in Fig. 8, we can first
move it along g direction to [zd,0] and then along yo direction to [zd,yd], or first along yo direction to [0, yd] and
then along z( direction to [zd,yd]. Of course, there are infinitely many such paths consisting of a series of pure g
and yo movements. It is clear that if we can design gaits to move any arbitrary distance along the xp- and yp-axis,
we can achieve anywhere in the plane.
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From Table II, we observe that both Gaits 7 and 8A steer the microswimmer to a final location on the xg-axis, and
Gait 8B moves it on the ygp-axis. We just need to find appropriate amplitudes for these gaits to achieve a desired xg
or yp movement.

For Gait 7, we vary the side length of the square to obtain a series of similar gaits as shown in Fig. 9(a). The final
achieved positions on the xg-axis are plotted as a function of the side length in Fig. 9(b), where the black, red, dark
green, and orange dots represent the final xy position achieved by the gait in the same color in Fig. 9(a). For the side
length in [0, 27, we get from Fig. 9(b) that the attained range for x is [—0.4559,1.7578]. To steer the microswimmer
to an z¢ within this range, we can read out a side length corresponding to xd from Fig. 9(b) and then apply Gait 7
with this side length. Note that for negative value of zf, there exist two different feasible side lengths and we can
choose an appropriate one. If the desired zd is outside this range, we can repeatedly apply Gait 7.

Gaits 8A and 8B are pieced together by four branches of lemniscate curves whose analytic expressions are given in
Eq. (41). We can vary the parameter v therein to obtain a series of similar gaits with different amplitudes as shown in
Figs. 9(c) and 9(e). The final achieved locations on the xg-axis and yp-axis are plotted as functions of v in Figs..9(d)
and 9(f), where the colored dots represent the final position achieved by the gait in the same«olor.in the left figures.
The achieved zy range from Gait 8A is [—0.0800, 1.1026], and yo range from Gait 8B is [—0.1701}0.1969]. The same
technique discussed for Gait 7 above can be used for Gait 8A to achieve a desired z location and for Gait.8B to a
desired yd location. Combining these three gaits, the microswimmer can move to any location-in theé-plarte:

Comparing Gaits 7 and 8A, we notice that Gait 7 steers the microswimmer along/p-axis farther than 8A, provided
that they have similar amplitudes. Moreover, Figs. 9(d) and 9(f) show that it iseasierfor the miecroswimmer to move
along xg than yg direction.

B. Optimization approach and Automatic Differentiation

We consider an optimization approach to solve the steering of‘microswimmer, that is, formulating it as an opti-
mization problem. Some early results were reported in [8, 1153144 17]. In the current work, we will use the gradient
descent algorithm to find steering gaits and apply symmetry properties studied.in preceding sections. In particular,
we will utilize the Automatic Differentiation (AutoDiff) technique to compute the gradients efficiently.

Suppose that the desired posture is [zd, yd, 63]7, and the’actual posture,achieved by the microswimmer at the final
time is [20(T),yo(T), 0o(T)]*. We can use a quadrati¢ function to guantify the difference between these two postures:

(60) = 5 (@oLw)™ 5 (o 1) + 5 (60(T) — 09)° (63)

2

N | =

We take Jy as the cost function (also known ‘as penalty-function) of an optimization problem, and the gait ¢(t) as
the optimization variable. Different gait ¢(¢) yields different final posture, and thus results in different cost. Our
objective is to find a gait ¢(¢) thatminimizes this'costifunction. In the ideal case when Jy = 0, we obtain a gait that
can drive the swimmer to the desired posture exactly:

The steering of microswimmer can'then be‘formulated as the following optimization problem:

in J; t)),
min o(o(t))
. . 1 ;
subject to  py = d—lR(Qo)Gv¢, (64)
by = =G,
o le ¢

The.optimization variable ¢(t) is a continuous function, and in general it is difficult to optimize over functions. Hence
we consider the Fourier expansion of ¢(t) on [0, T:

N
o1 (t) =ao + E (an, cos nwt + by, sin nwt),
et (65)

bo(t) = co + anl(cn cos nwt + d, sinnwt),
where w'= 27/T. Note that the expansion is truncated at the order of N, and the conditions ¢1(0) = ¢1(T") and
¢2(0) = ¢2(T) are automatically satisfied. The gait functions ¢1(t) and ¢2(t) are completely characterized by the

expansion coefficients, which can form a vector:

p = [ag,a1,b1, -+ ,an,bn,co,c1,d1, -+ ,en,dn] (66)
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The search for a steering gait is converted to find an appropriate coefficient vector p* that minimizes the cost function
Jo.

There exist many optimization algorithms to solve this problem. In this work, we adopt gradient descent algorithm,
which is a simple yet widely used optimization algorithm. Gradient algorithm is an iterative procedure. At each step,
we compute the gradient of the cost function with respect to the optimization variables. This gives a direction to
reduce the cost function, which can be used to update the current solution to a better one. The procedure of the
gradient descent algorithm can be listed as follows.

1. Choose an initial guess of the Fourier coefficient vector u;

2. At the k-th iteration, compute Jo(p*) and the gradient ng Jo(1k);
3. Update the coefficient vector by pf+1 = p* — eVZk Jo(p¥), where € is a chosen small positive number;
4. Repeat 2-3 until a desired convergence is reached.

The implementation of gradient algorithm is straightforward, and the key step is to compute the gradient Vz:k Jo(1F).
There exist multiple methods to do this computation. The most common one is finitedifference;-however, it has
intrinsic approximating errors and may result in numerical instability. Another method is/symbolic differentiation,
which can lead to inefficient codes and is usually difficult to deal with computation“programs.

Automatic differentiation (AutoDiff) technique overcomes these difficulties and have made (significant progresses
in recent years [2]. In general, a function can be calculated by executing=a Series of basic/operations (+, —, *, /)
and elementary functions such as exp, log, sin, cos, etc. The basic idea of AutoDiff is to"autematically analyze and
track this series of operations and functions, and then to repeatedly apply the chain rule to compute the derivatives.
There are several AutoDiff tools available, including ADOL-C [15], Google TensorFlow [6]y and Matlab Deep Learning
Toolbox. In our case, we need to take the derivative of final posture 2o (T), yo(T), 6o (T)], which is the solution of
differential equation (64) at the final time. We will use Matlab’AutoDiff tools to calculate the gradients because it
requires only minimum programming efforts?. The detailed codé is'includedsin Appendix B.

Without imposing any constraints on gait symmetry for the ‘tinie béing, we apply gradient descent algorithm to
investigate the following two steering problems.

Example 3 Counsider to steer the microswimmer. from an initial (position [0,0] to a final position [—0.5,0.2]. The
initial orientation 6y(0) is set at 0, and the final orientation, 6y (Z")is left free. Set the truncation order N = 5.
The gradient algorithm yields two different results as shown in\Fig. 10: (a) plots the two obtained gaits, (b) the
corresponding swimming trajectories, and (&)how the cost functions decrease versus iteration number. The difference
between these two results is that they/start from different initial guesses. For the top row, the initial gait is chosen
to be

¢1(t) =0 coswt, Pa(t) = 0.5sinwt,
and thus the initial coefficient vector is

p’ =[05,0.5,0, ---, 0, 0,0, 05,0, ---, 0]7.
—— N——
2N-1 2N-2
For the bottom row, it is
¢1(t) = 0.1 coswt, ¢a(t) =0.1sinwt,
and thus
p’=10,0.1,0,---,0,0, 0 01,0, ---, 0]".
—— N——

2N—-1 2N -2

It can be'seen that both gaits steer the microswimmer to the desired location [—0.5,0.2] with high accuracy; however,
these two gaits look very different. This is because gradient descent algorithm is a local method, and the optimization
result highly depends on the initial guess.

2 The procedure of solving differentiation equation for AutoDiff can be done by Matlab command dlode45, which is available only in
Matlab version 2021b and later.
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FIG. 11: (Color online) Gaits to achieve a net rotation of 7.

Example 4 Consider to'achieve a pure rotation, e.g., starting from an initial posture [0,0,0] to a final one [0,0, %]
Set the initial-gait as

¢1(t) = coswt, ¢(t) = sinwt.

Fig.11(a) shows the obtained gaits when the truncation order N is set to be 1, 2, and 5, and (b) plots the corresponding
swimming trajectories. All of these three gaits generate swimming trajectories that can achieve the desired pure

rotation with high accuracy. However, we observe that larger truncation order N yields more curved gaits with cusps,
because larger N results in more high frequency components in the gait ¢(t).
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FIG. 12: A new coordinate system ¢’ ¢5 obtained by rotating ¢1¢» for w/4 countercléckwise.

C. Simplified Fourier expansions for symmetric gaits

Examples 3 and 4 manifest that there may exist many different gaits that_can achieve the.same final posture.
We now consider to steer with symmetric gaits. The symmetry in the geemetric’shape of a gait imposes certain
constraints on its Fourier expansion coefficients and can considerably simplify,them. This reduces the dimension of
optimization variables and consequently alleviates the computational load<of'the optimizatien“procedure. We hereby
derive simplified Fourier expansions for the symmetric gaits investigatediin Sec: IV.

Take Gaits 7 and 8A for example. They are symmetric with respect to both theldines po = ¢1 and ¢y = —¢1. For
simplicity, we represent the gait in a new coordinate system ¢ ¢hdefined by these two lines, as shown in Fig. 12(b).
This way, the symmetry with respect to the line ¢o = ¢; becomeés.mirror imagesto the horizontal ¢} axis, and the
symmetry to the line ¢o = —¢; is mirror image to the vertical’ ¢4 axis. The coordinates of the gait in the original
$1¢2 frame can be obtained by ¢(t) = R()¢'(1).

Suppose that the Fourier expansions for Gaits 7 and 8Ain the ¢, ¢4 frame are given by 3

N
(1) = ag + anl(a" cos nwt b, sin nwt),
N
12 o .
P (t) =k anl (€n cos nwt + d,, sin nwt),
where ¢ € [0, T]. We then consider leg 2,1eg 3, and leg 4.

Leg 2. From Fig. 7(a), for t €'[2, Z]¢we hayéwdi(t) = —¢1 (L —t) and ¢4(t) = ¢4(L —¢). Because nw (L —¢) =

nmT — nwt, we get
T N
/
— = —1
o3 - )

—ag — anl(an cos(nm — nwt) + by, sin(nm — nwt))

N

= —ap + Z (—1)"*a, cosnwt + (—1)"by, sin nwt),
n=t (68)

ol T N .
o3 N t) =co+ anl(cn cos(nm — nwt) + d,, sin(nm — nwt))
N
=co+ Z 71((71)”071 cos nwt + (—1)""1d,, sin nwt).
Equating the.corresponding coefficients in Eq. (68) with those in (67), we obtain that
ap = 0; Aeven = 07 bodd - 07 Codd = 07 deven =0. (69)

Leg 3¢ For t € [L 3] we have ¢ (t) = —¢(t — 2) and ¢4(t) = —¢4(t — L). Then nw (t — L) = nwt — nw. We

3 With a slight abuse of notation, we use same symbols for Fourier expansion coefficients as in Eq. (65).
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get

T N .
- (t — 5) —ap — anl(an cos(nwt — nw) + by, sin(nwt — nr))

N
= —ap + Z (=1)"*a, cosnwt + (—1)"Ttb, sin nwt),
=t (70)
/ T . N d :
—¢5 [t — 3 )= —¢c~- anl(cn cos(nwt — nm) + dy, sin(nwt — n)
N
=—co+ Z 1((—1)"+lcn cosnwt + (—1)"*d,, sin nwt.
n—=
Equating the corresponding coefficients in Eq. (70) with those in (67), we get
ap = 07 Aeven = 0; beven = 0; Co = 0; Ceven = 07 deven =0. (71)

Leg 4. For t € [2L, T, we have ¢ (t) = ¢\ (T —t) and ¢4 (t) = —¢5(T —t). Then nw (I' =*) =2nm — nwt.“We have

N
& (T —t) =ag+ Z ﬂ(an cos(2nm — nwt) + by, sin(2nm— nwt))

N
=ao + anl(an cos nwt — by, sin nwt),
N

(72)
—¢h (T —t) = —cp — Z (cn cos(2nm — nwt)+ dpsin(2nm — nwt)
n=1
N
= —cp+ anl(fcn cos nwt + dy'sin nwt).
Equating the corresponding coefficients in Eq. (72) with thosein” (67), we get
b, =0, c¢p=0, ¢,=0. (73)
Combining Egs. (69), (71), and (73), we obtain
ap =0, Geven =04 by, = 0, ¢©=0, c,=0, deven = 0. (74)
Hence the Fourier expansion of Gaits 7 and 8A can be written as
N
) A
()= anl’odd ayp, COS NWt,
(75)

N
oo (t) = anl oy O sin it

In addition, since Gait(8A starts from, the origin, it has to satisfy an extra condition

N

/ _ _
¢1 (O) - Zn:l,odd On = 0

We perform, similar analyses to all the other symmetric gaits, and obtain their corresponding simplified Fourier
expansions as shewn im Table III. For single symmetric gaits 1-6B, either the even or odd coefficients are eliminated,
or the entire sine or cosine terms. This effectively cuts the number of Fourier expansion coefficients by half. For
double symmetric gaits 7-9B, the expansion expressions are even more simplified and the coefficient numbers can be
brought 'down-to a quarter. This can greatly alleviate the computational load for the optimization procedure.

D. Steering by symmetric gaits

With the simplified Fourier expansion derived above, we consider to steer the microswimmer by applying symmetric
Gaits 7 and 8B. The comprehensive investigations on other symmetric gaits are left to future work.

From previous studies, we know that Gait 7 moves the microswimmer along xy direction. We address the question
how far Gait 7 can move the microswimmer toward the negative xg-axis on the time interval [0,T]. Note that when
we refer to Gait 7 in what follows, it does not have to be in the same square shape as in Fig. 7(a), but rather can
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Gait o4 o Additional Conditions
1 fo:l_yodd(an cos nwt + by, sin nwt) SN aa(en cos nwt + dy, sin nwt)
ZN, an =0
4A ditto ditto ntodd
D n—1.0d4¢n =0
4B ZnNzl by, sin nwt ZnNzl dy, sin nwt
N N .
2 ao + >, _1 Gn COS NWt Y n— dn sin nwt
5A ditto ditto ao + ZnN:1 an =0
N
aO + Zn: even a = 0
5B a0+ N oon (@n cosnwt + by, sin nwt) SN aa(en cosnwt + dy, sinpwt) - 3 "
Zn:l odd “n = 0
3 SN by sinnwt co+ 3N ¢y cosndt
6A ditto ditto co + ZnNzl cn =0
SN agan =0
6B SN ad(@n cos nwt + by, sin nwt) co + 300 ved(Ciicos nwt + dpsin nwt) ; aa
' / Co + Zn:Q even Cn = 0
7 Zgil’odd an COS NWt SN Jag dn sinnwt
8A ditto ditto SN aaan =0
8B S cven b sin nwt Zi:’:l‘rodd dy, sin nwt
9A Zgzl,odd by, sin nwt Zgzl’odd Cn COS Wt Zgzl,odd an =0
9B ZiLLOdd bn sin nwt P dp sin nwt

n=2,even

TABLE III: Fourier Expansions of ¢} and ¢5 for Gaits 1-9B.

be any gait that is symmetric with respect to both ¢} and ¢, axes, starts from ¢/, axis, and does not cross itself.
Moreover, from the Fourier expansion listed in Table ITI, ¢} of such a gait contains only the odd cosine terms and ¢}
only the ,odd sine terms.

This can be formulated as the following optimization problem

. ) 1
subject to  py = 7

min zo(T),
o

_IR(Q())Gng;

. 1 .
0y = d—le¢>,
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(a) The gait looping around the ellipsoidal (b) Swimming trajectory moving towards negative &g direction.

path for five times.

FIG. 13: Gait to achieve a smallest possible zo(7") when N_= 5.

where p is the Fourier coefficient vector defined in Eq. (66). Set N =5 and the initial guess as the unit circle:
@) (t) = coswt, Py(t) = sinwt.
The gradient descent algorithm generates the following result:

#}(t) = —0.0003 coswt + 0.0010.cos3wt + 2.1765 cosbuwt,

T
@5 (t) = 0.0006 sinwt — 0.0008sin 3t 4 1.2124 sin 5wt. (77)

Fig. 13(a) plots this gait, and (b) the corresponding swimming trajectory. It can be seen from Eq. (77) that the
coefficients of the 1st and 3rd harmonics are much stnaller than those.of.the 5th and can be effectively neglected. The
optimal gait indeed travels along an ellipsoidal path for. five times. This is because we have specified only the terminal
time T" and truncation order N in the formulation, and the swimming trajectory depends only on the geometric shape
of the gait. Then within a given time interval,»the.optimal gait, will be repeating a closed path for N times so as to
move farther left.

To find a steering gait in one cycle, we add some additional penalty function, e.g., the path length traversed by the
center link:

T
JLz/ i + g dt. (78)
0

This is to say, among all the gaits that steer the microswimmer toward farther left, we want to find the one with
short path length. This way the optimization algorithm will stay away from the gait that loops around a closed path
for multiple times./Note that Jj, is also independent of the time parameterization. To minimize z¢(T") and Jy, at the
same time, one simple method is‘toicombine them into a weighted sum:

J = wo(T) + M. (79)

Here ) is a weighting factor that is chosen as, say, 0.01, to compromise between two penalty functions. The optimiza-
tionypreblem can be written as

min zo(T) + AJz,

m
. . 1 |
subject to  po = d—lR(eo)Gu¢, (80)
90 - d_le¢

Sett V =5 and initial guess as the unit circle. The gradient algorithm generates the following gait:

1 (t) = 1.3883 coswt + 0.4562 cos 3wt + 0.2789 cos Swt,
¢h(t) = 1.3108sinwt + 0.4110 sin 3wt + 0.2108 sin 5wt.
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FIG. 14: (Color online) Optimized Gait 7 to achieve a small zo(7T") with short path length.
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FIG. 15: (Color online) Optimized, Gait 8B to.achieve a small yo(7") with short path length.

Fig. 14(a) plots the obtained gaityand (b)'the corresponding swimming trajectory. The minimized value of xo(T") is
—0.6245, which is smaller than.the lower bound of .the range attained by the original Gait 7 in Fig. 9(b).

Next we study how far Gait 8B can steer,the microswimmer toward the negative yp-axis in one cycle. This can be
formulated into the following eptimization preblem

min yo(T) + AL,
m

. . 1 |
subject to  po = d—lR(eo)Gv¢, (81)

. 1 .
o = -Gt

From. Table TII, we know that ¢} for Gait 8B contains only the even sine terms, and ¢} only the odd sine terms.
Set the initial guess as

@) (t) = sin2wt, ¢h(t) = sinwt.

Different-truncation order N generates the optimization results as follows.

o N =4
1 (t) = 1.6055sin2wt + 0.1546 sin dwt,
@h(t) = 1.9037 sinwt — 0.8099 sin 3wt,
yo(T) = —0.2710,

J, = 6.3072;
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e N=6
1 (t) = 1.3714sin2wt — 0.4564 sin 4wt — 0.1537 sin 6wt
@h(t) = 1.3996 sinwt — 0.9472 sin 3wt + 0.3811 sin 5wt
y(T) = —0.2712,
Jr = 6.3420:
e N =28
¢ (t) = 1.0600 sin 2wt — 0.6726 sin 4wt + 0.0978 sin 6wt + 0.1025 sin 8wt
¢h(t) = 1.1243 sinwt — 0.8930 sin 3wt + 0.4860 sin 5wt — 0.2108 sin Twt
y()(T) = 702703,
Jr, = 6.1425.

These results show that different N generates similar values of yo(T"), which are all considerably smaller than the lower
bound of the range achieved by the original Gait 8B in Fig. 9(f). Fig. 15 shows the optimal gait and the corresponding
swimming trajectory when N = 4. The gaits from N = 6 and N = 8 are also in‘similar shapes to Fig, 15(a), except
that they are more curved because of the presence of high frequency components.

VI. CONCLUSION AND FUTURE WORK

In this work we studied dynamical behaviors and steering of«a three-link microswimmer in a viscous fluid by
analyzing its dynamics and symmetries and by applying optimization techniques.

We derived the analytic expressions of dynamics and discussed basic properties of its time evolutions. We carefully
examined the symmetries in dynamics as well as their ramifications onithe swimming trajectory and net rotation.
Moreover, comprehensive investigations on general symmetric gaits svereiwconducted. Based on these results, we
studied the steering problem of microswimmer, which, was formulated as an optimization problem and solved by
gradient descent algorithm. Various steering results\from different. symmetries, initial conditions, truncation orders,
and two-fold objectives were discussed.

In the future, we plan to explore many further interesting problems. One is to study the steering features of
symmetric gaits other than 7 and 8B. Another is to ¢ombine‘other optimal functions such as power, energy, and
efficiency. The ideal goal, of course, will be’to build real multi-link microswimmers that realize the various engineering
applications.

APPENDIX A: MATLAB CODE TO COMPUTE G, AND G,

clear all;
syms 10 thetal phil phi2 real;
a0=thetal; ‘al=thetal0-phil; a2=thetalO+phi2;

D1=[1.0\ 10*(sin(a0)+sin(al1));
0.1 -10*(cos(a0)+cos(al));
00 1];

D2=[10 -10*(sin(a0)+sin(a2));
0 1 10*(cos(a0)+cos(a2));
00 11;

E1=[-10*sin(al) O0;
10*cos(al) 0;
-170];

E2=[0 -10*sin(a2);
0 10*cos(a2);

0 11;

PO=[1+(sin(a0)) "2 -sin(a0)*cos(al) 0;
-sin(a0)*cos(a0) 1+(cos(a0))"2 0;
0 0 10°2/6]1;

P1=[1+(sin(al)) "2 -sin(al)*cos(al) O0;

-sin(al)*cos(al) 1+(cos(al))"2 0;
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0 0 10°2/6];

P2=[1+(sin(a2))"2 -sin(a2)*cos(a2) 0;
-sin(a2)*cos(a2) 1+(cos(a2))"2 0;
0 0 10°2/6]1;

Zl=simplify( PO+ D1’*P1%D1 + D2’*P2xD2);
S2=simplify( D1’*P1xE1+D2’*P2+E2 );
R=[cos(theta0) -sin(thetal);

sin(theta0) cos(theta0)];

di=det(Z1);

Si=simplify( -inv(Z1)*d1 );

g0=S1%52;

Gl=simplify([R’*g0(1:2,:); g0(3,:)1);

APPENDIX B: MATLAB CODE TO COMPUTE THE GRADIENT

function [xT, dxTdal = x0T_grad(a)

x3=dlode4b(@dx0dt_dlarray, [0 1], dlarray([0;0;0;0], ’SS’), a);
xT=x3(1,1,end);
dxTda = dlgradient(xT,a);

end

function dx0dt = dxOdt_dlarray(t, x, a)
10=1; w=2*pi; al=a; rotangle=0; thetalO=x(3);

M=length(a0)/2; phil=a0(1); phi2=a0(M+1); phildot=0;  phi2dot=0;

for k=1:(M-1)/2
phil=phii+a0(2xk)*cos (k*w*t)+a0(2*k+1)*sin(k*w*t) ;
phi2=phi2+a0(2*k+M)*cos (k*w*t) +a0(2*k+1+HD*sin(k*wt);
phildot=phildot-a0(2*k)*k*w*sin (k*w*t)+a0(2%k+1) *k*w*cos (kxw*t) ;
phi2dot=phi2dot-a0 (2*k+M) *k*w*sin (kxwkt)+a0(2xk+1+M) ¥kxuxcos (k*¥w*t) ;

end

z=[cos(rotangle) -sin(rotangle); sin(rotangle) cos(rotangle)]*[phil phildot; phi2 phi2dot];
phil=z(1,1); phi2=z(2,1); phildot=z(1,2); phi2dot=2z(2,2);

d1=10"2#*(64*cos (phil)+64*cos (phi2)+24*cos (phil) *cos (phi2)-32*sin(phil)*sin(phi2)+12*cos(phil) "2
+12*cos (phi2) "2+8xcos(phil) *cos (phi2) 72+8%cos (phil) “2*cos(phi2)+7*cos(phil) “2*cos(phi2) "2
-16%cos(phil)*sin(phil) *sin(phi2)=16*cos(phi2)*sin(phil)*sin(phi2)
-11*cos(phil)*cos(phi2)#sin(phil)*sin(phi2)+98);

Gl=dlarray(zeros(3,2));

G1(1,1)=-(10"3*(288*sin(phil-phi2)+48*sin(phil-2%phi2)+4*sin(phil+2%phi2)+22*sin(2*phil+phi2)
+55*sin (2+phil) -41*sin (2%phi2)+11*sin(2*phil+2*phi2)+96*sin(phil+phi2)+468*sin(phil)-186*sin(phi2)))/12;

G1(1,2)=(1073+(22+sin(phi1+2*phi2)-288*sin(phil-phi2)+4*sin(2%phil+phi2)-41*sin(2*phil)+55+sin(2+phi2)
=48*sin(2*phil-phi2)+11*sin(2*phil+2*phi2)+96%sin(phil+phi2)-186*sin(phil)+468*sin(phi2)))/12;

G1(2,1)=-(10"3*(80*cos (phil)+28*cos (phi2)+108*cos(phil) *cos (phi2)+22*cos(phil) "2+14*cos(phi2) "2
+34xcos(phil)*cos(phi2) "2+11*cos(phil) "2*cos(phi2)-11*cos(phil) *sin(phil)*sin(phi2)
+2%cos(phi2) *sin(phil)*sin(phi2)))/3;

G1(2452)=-(10"3*(28*cos (phil)+80*cos (phi2)+108*cos(phil) *cos(phi2)+14*cos(phil) "2+22*cos(phi2) "2
+11*cos (phil)*cos(phi2) "2+34*cos(phil) "2*cos(phi2)+2*cos(phil) *sin(phil) *sin(phi2)
~11*cos(phi2)*sin(phil)*sin(phi2)))/3;

G1(3,1)=(10"2*(96*cos (phil)+36*cos(phil) *cos(phi2)-48*sin(phil)*sin(phi2)-12*cos(phi2) "2
+12xcos (phil)*cos(phi2) "2+11*cos(phil) "2*cos (phi2) "2-24*cos(phi2) *sin(phil)*sin(phi2)
-11xcos(phil) *cos(phi2)*sin(phil)*sin(phi2)+82))/3;

G1(3,2)=-(10"2%(96%cos (phi2)+36*cos(phil) *cos(phi2)-48*sin(phil) *sin(phi2)-12*cos(phil) "2
+12xcos(phil) "2*cos(phi2)+11*cos (phil) "2*cos(phi2) "2-24*cos(phil) *sin(phil) *sin(phi2)
-11*cos(phil)*cos(phi2)*sin(phil)*sin(phi2)+82))/3;

z1=G1(1,1)*phildot+G1(1,2)*phi2dot;
22=G1(2,1)*phildot+G1(2,2) *phi2dot;

dxOdt=dlarray(zeros(4,1), ’SS’);
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